Stem Cell Reviews and Reports

, Volume 5, Issue 4, pp 353–368 | Cite as

Isolation and Differentiation of Chondrocytic Cells Derived from Human Embryonic Stem Cells Using dlk1/FA1 as a Novel Surface Marker

  • Linda Harkness
  • Hanna Taipaleenmaki
  • Amer Mahmood
  • Ulrik Frandsen
  • Anna-Marja Saamanen
  • Moustapha Kassem
  • Basem M. Abdallah


Few surface markers are available to monitor lineage differentiation during chondrogenesis. Recently, delta-like1/fetal antigen1 (dlk1/FA1), a transmembrane protein of the Notch/Delta/Serrata family, was shown to be essential for inducing early chondrogenesis. Thus, we investigated the possible use of dlk1/FA1 as a novel surface marker for chondroprogenitor cells during hESC differentiation. We found that, Dlk1/FA1 is expressed specifically in cells undergoing transition from proliferating to prehypertrophic chondrocytes during endochondral ossification of the mouse limb. In hESC cells, dlk1/FA1 was not expressed by undifferentiated hESC, but expressed during in vitro embryoid bodies (hEBs) formation upon down-regulation of undifferentiated markers e.g. Oct 3/4. Similarly, dlk1/FA1 was expressed in chondrocytic cells during in vivo teratoma formation. Interestingly, treatment of hEBs with Activin B, a member of TGF-ß family, markedly increased Dlk1 expression in association with up-regulation of the mesoderm-specific markers (e.g. FOXF1, KDR and VE-cadherin) and SOX9. dlk1/FA1+ cells isolated by fluorescence activated cell sorting (FACS) were capable of differentiating into chondrocytic cells when cultured as micromass pellets in a xeno-free system containing TGFβ1. In conclusion, we identified dlk1/FA1 as a novel marker of chondroprogenitor cells that undergo embryonic lineage progression from proliferation to the prehypertrophic stage. Tracking dlk1/FA1 expression as a mesoderm/chondroprogenitor surface marker provides a novel strategy for designing clinically relevant protocols to direct the differentiation of hESC into chondrocytes.


Dlk1 FA1 Pref-1 Chondrogenesis hESC Bone development Surface marker 

Supplementary material

12015_2009_9099_Fig7_ESM.jpg (515 kb)
Figure S1

Immunolocalization of dlk1/FA1 in developing articular cartilage. Immunolocalization of dlk1 (FA1) is compared to those of prechondrogenic type IIA procollagen (COLIIA), and type X collagen (COLX) in adjacent sagital paraffin sections from knee femoral epiphyses of 10-day-old (top panels) and 20-day-old (bottom panels) mice. Secondary HRP-linked antibody was detected by DAB staining (FA1 and COLIIA) or AP-linked antibody by Fast Red (COLX) and sections were counterstained with haematoxylin. Bar equals to 100 μm. (JPEG 514 kb)


  1. 1.
    Heng, B. C., Cao, T., & Lee, E. H. (2004). Directing stem cell differentiation into the chondrogenic lineage in vitro. Stem Cells, 22, 1152–1167.CrossRefPubMedGoogle Scholar
  2. 2.
    Keller, G. (2005). Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes & Development, 19, 1129–1155.CrossRefGoogle Scholar
  3. 3.
    Trounson, A., & Pera, M. (2001). Human embryonic stem cells. Fertility and Sterility, 76, 660–661.CrossRefPubMedGoogle Scholar
  4. 4.
    Doss, M. X., Koehler, C. I., Gissel, C., Hescheler, J., & Sachinidis, A. (2004). Embryonic stem cells: a promising tool for cell replacement therapy. Journal of Cellular and Molecular Medicine, 8, 465–473.CrossRefPubMedGoogle Scholar
  5. 5.
    Vats, A., Bielby, R. C., Tolley, N., Dickinson, S. C., Boccaccini, A. R., Hollander, A. P., et al. (2006). Chondrogenic differentiation of human embryonic stem cells: the effect of the micro-environment. Tissue Engineering, 12, 1687–1697.CrossRefPubMedGoogle Scholar
  6. 6.
    Hwang, N. S., Kim, M. S., Sampattavanich, S., Baek, J. H., Zhang, Z., & Elisseeff, J. (2006). Effects of three-dimensional culture and growth factors on the chondrogenic differentiation of murine embryonic stem cells. Stem Cells, 24, 284–291.CrossRefPubMedGoogle Scholar
  7. 7.
    Bray, S. J., Takada, S., Harrison, E., Shen, S. C., & Ferguson-Smith, A. (2008). The atypical mammalian ligand Delta-like1 (Dlk1) can regulate Notch signalling in Drosophila. BMC Developments in Biologicals, 8, 11.CrossRefGoogle Scholar
  8. 8.
    Wang, Y., & Sul, H. S. (2006). Ectodomain shedding of preadipocyte factor 1 (Pref-1) by tumor necrosis factor alpha converting enzyme (TACE) and inhibition of adipocyte differentiation. Molecular and Cellular Biology, 26, 5421–5435.CrossRefPubMedGoogle Scholar
  9. 9.
    Jensen, C. H., Teisner, B., Hojrup, P., Rasmussen, H. B., Madsen, O. D., Nielsen, B., et al. (1993). Studies on the isolation, structural analysis and tissue localization of fetal antigen 1 and its relation to a human adrenal-specific cDNA, pG2. Human Reproduction, 8, 635–641.PubMedGoogle Scholar
  10. 10.
    Yevtodiyenko, A., & Schmidt, J. V. (2006). Dlk1 expression marks developing endothelium and sites of branching morphogenesis in the mouse embryo and placenta. Developmental Dynamics, 235, 1115–1123.CrossRefPubMedGoogle Scholar
  11. 11.
    Floridon, C., Jensen, C. H., Thorsen, P., Nielsen, O., Sunde, L., Westergaard, J. G., et al. (2000). Does fetal antigen 1 (FA1) identify cells with regenerative, endocrine and neuroendocrine potentials? A study of FA1 in embryonic, fetal, and placental tissue and in maternal circulation. Differentiation, 66, 49–59.CrossRefPubMedGoogle Scholar
  12. 12.
    Laborda, J. (2000). The role of the epidermal growth factor-like protein dlk in cell differentiation. Histology and Histopathology, 15, 119–129.PubMedGoogle Scholar
  13. 13.
    Smas, C. M., & Sul, H. S. (1997). Molecular mechanisms of adipocyte differentiation and inhibitory action of pref-1. Critical Reviews in Eukaryotic Gene Expression, 7, 281–298.PubMedGoogle Scholar
  14. 14.
    Sakajiri, S., O’Kelly, J., Yin, D., Miller, C. W., Hofmann, W. K., Oshimi, K., et al. (2005). Dlk1 in normal and abnormal hematopoiesis. Leukemia, 19, 1404–1410.CrossRefPubMedGoogle Scholar
  15. 15.
    Crameri, R. M., Langberg, H., Magnusson, P., Jensen, C. H., Schroder, H. D., Olesen, J. L., et al. (2004). Changes in satellite cells in human skeletal muscle after a single bout of high intensity exercise. Journal of Physiology-London, 558, 333–340.CrossRefGoogle Scholar
  16. 16.
    Abdallah, B. M., Jensen, C. H., Gutierrez, G., Leslie, R. G., Jensen, T. G., & Kassem, M. (2004). Regulation of human skeletal stem cells differentiation by Dlk1/Pref-1. Journal of Bone and Mineral Research, 19, 841–852.CrossRefPubMedGoogle Scholar
  17. 17.
    Moon, Y. S., Smas, C. M., Lee, K., Villena, J. A., Kim, K. H., Yun, E. J., et al. (2002). Mice lacking paternally expressed Pref-1/Dlk1 display growth retardation and accelerated adiposity. Molecular and Cellular Biology, 22, 5585–5592.CrossRefPubMedGoogle Scholar
  18. 18.
    Manzoni, M. F., Pramparo, T., Stroppolo, A., Chiaino, F., Bosi, E., Zuffardi, O., et al. (2000). A patient with maternal chromosome 14 UPD presenting with a mild phenotype and MODY. Clinical Genetics, 57, 406–408.CrossRefPubMedGoogle Scholar
  19. 19.
    Wang, Y., & Sul, H. S. (2009). Pref-1 regulates mesenchymal cell commitment and differentiation through Sox9. Cell Metabolism, 9, 287–302.CrossRefPubMedGoogle Scholar
  20. 20.
    Bachmann, E., Krogh, T. N., Hojrup, P., Skjodt, K., & Teisner, B. (1996). Mouse fetal antigen 1 (mFA1), the circulating gene product of mdlk, pref-1 and SCP-1: isolation, characterization and biology. Journal of Reproduction and Fertility, 107, 279–285.PubMedCrossRefGoogle Scholar
  21. 21.
    Salminen, H., Vuorio, E., & Saamanen, A. M. (2001). Expression of Sox9 and type IIA procollagen during attempted repair of articular cartilage damage in a transgenic mouse model of osteoarthritis. Arthritis and Rheumatism, 44, 947–955.CrossRefPubMedGoogle Scholar
  22. 22.
    Girkontaite, I., Frischholz, S., Lammi, P., Wagner, K., Swoboda, B., Aigner, T., et al. (1996). Immunolocalization of type X collagen in normal fetal and adult osteoarthritic cartilage with monoclonal antibodies. Matrix Biology, 15, 231–238.CrossRefPubMedGoogle Scholar
  23. 23.
    Cowan, C. A., Klimanskaya, I., McMahon, J., Atienza, J., Witmyer, J., Zucker, J. P., et al. (2004). Derivation of embryonic stem-cell lines from human blastocysts. New England Journal of Medicine, 350, 1353–1356.CrossRefPubMedGoogle Scholar
  24. 24.
    Fletcher, J. M., Ferrier, P. M., Gardner, J. O., Harkness, L., Dhanjal, S., Serhal, P., et al. (2006). Variations in humanized and defined culture conditions supporting derivation of new human embryonic stem cell lines. Cloning Stem Cells, 8, 319–334.CrossRefPubMedGoogle Scholar
  25. 25.
    Frandsen, U., Porneki, A. D., Floridon, C., Abdallah, B. M., & Kassem, M. (2007). Activin B mediated induction of Pdx1 in human embryonic stem cell derived embryoid bodies. Biochemical and Biophysical Research Communications, 362, 568–574.CrossRefPubMedGoogle Scholar
  26. 26.
    Wiles, M. V., & Johansson, B. M. (1999). Embryonic stem cell development in a chemically defined medium. Experimental Cell Research, 247, 241–248.CrossRefPubMedGoogle Scholar
  27. 27.
    Jensen, C. H., Krogh, T. N., Hojrup, P., Clausen, P. P., Skjodt, K., Larsson, L. I., et al. (1994). Protein structure of fetal antigen 1 (FA1). A novel circulating human epidermal-growth-factor-like protein expressed in neuroendocrine tumors and its relation to the gene products of dlk and pG2. European Journal of Biochemistry, 225, 83–92.CrossRefPubMedGoogle Scholar
  28. 28.
    Abdallah, B. M., Haack-Sorensen, M., Burns, J. S., Elsnab, B., Jakob, F., Hokland, P., et al. (2005). Maintenance of differentiation potential of human bone marrow mesenchymal stem cells immortalized by human telomerase reverse transcriptase gene despite [corrected] extensive proliferation. Biochemical and Biophysical Research Communications, 326, 527–538.CrossRefPubMedGoogle Scholar
  29. 29.
    Lee, H. S., Huang, G. T., Chiang, H., Chiou, L. L., Chen, M. H., Hsieh, C. H., et al. (2003). Multipotential mesenchymal stem cells from femoral bone marrow near the site of osteonecrosis. Stem Cells, 21, 190–199.CrossRefPubMedGoogle Scholar
  30. 30.
    Jensen, C. H., Krogh, T. N., Stoving, R. K., Holmskov, U., & Teisner, B. (1997). Fetal antigen 1 (FA1), a circulating member of the epidermal growth factor (EGF) superfamily: ELISA development, physiology and metabolism in relation to renal function. Clinica Chimica Acta, 268, 1–20.CrossRefGoogle Scholar
  31. 31.
    Itskovitz-Eldor, J., Schuldiner, M., Karsenti, D., Eden, A., Yanuka, O., Amit, M., et al. (2000). Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Molecular Medicine, 6, 88–95.PubMedGoogle Scholar
  32. 32.
    Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282, 1145–1147.CrossRefPubMedGoogle Scholar
  33. 33.
    Lefebvre, V., & Smits, P. (2005). Transcriptional control of chondrocyte fate and differentiation. Birth Defects Res C Embryo Today, 75, 200–212.CrossRefPubMedGoogle Scholar
  34. 34.
    Stefansson, K., Wollmann, R. L., Moore, B. W., & Arnason, B. G. (1982). S-100 protein in human chondrocytes. Nature, 295, 63–64.CrossRefPubMedGoogle Scholar
  35. 35.
    Saito, T., Ikeda, T., Nakamura, K., Chung, U. I., & Kawaguchi, H. (2007). S100A1 and S100B, transcriptional targets of SOX trio, inhibit terminal differentiation of chondrocytes. EMBO Reports, 8, 504–509.CrossRefPubMedGoogle Scholar
  36. 36.
    Era, T., Izumi, N., Hayashi, M., Tada, S., Nishikawa, S., & Nishikawa, S. I. (2008). Multiple mesoderm subsets give rise to endothelial cells whereas hematopoietic cells are differentiated only from a restricted subset in ES cell differentiation culture. Stem Cells 26, 401–411.Google Scholar
  37. 37.
    Gadue, P., Huber, T. L., Paddison, P. J., & Keller, G. M. (2006). Wnt and TGF-beta signaling are required for the induction of an in vitro model of primitive streak formation using embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 103, 16806–16811.CrossRefPubMedGoogle Scholar
  38. 38.
    Kimelman, D. (2006). Mesoderm induction: from caps to chips. Nature Reviews. Genetics, 7, 360–372.CrossRefPubMedGoogle Scholar
  39. 39.
    Inman, G. J., Nicolas, F. J., Callahan, J. F., Harling, J. D., Gaster, L. M., Reith, A. D., et al. (2002). SB-431542 is a potent and specific inhibitor of transforming growth factor-beta superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Molecular Pharmacology, 62, 65–74.CrossRefPubMedGoogle Scholar
  40. 40.
    Berends, M. J., Hordijk, R., Scheffer, H., Oosterwijk, J. C., Halley, D. J., & Sorgedrager, N. (1999). Two cases of maternal uniparental disomy 14 with a phenotype overlapping with the Prader-Willi phenotype. American Journal of Medical Genetics, 84, 76–79.CrossRefPubMedGoogle Scholar
  41. 41.
    Hordijk, R., Wierenga, H., Scheffer, H., Leegte, B., Hofstra, R. M., & Stolte-Dijkstra, I. (1999). Maternal uniparental disomy for chromosome 14 in a boy with a normal karyotype. Journal of Medical Genetics, 36, 782–785.PubMedGoogle Scholar
  42. 42.
    Laborda, J., Sausville, E. A., Hoffman, T., & Notario, V. (1993). dlk, a putative mammalian homeotic gene differentially expressed in small cell lung carcinoma and neuroendocrine tumor cell line. Journal of Biological Chemistry, 268, 3817–3820.PubMedGoogle Scholar
  43. 43.
    Smas, C. M., & Sul, H. S. (1993). Pref-1, a protein containing EGF-like repeats, inhibits adipocyte differentiation. Cell, 73, 725–734.CrossRefPubMedGoogle Scholar
  44. 44.
    Abdallah, B. M., Boissy, P., Tan, Q., Dahlgaard, J., Traustadottir, G. A., Kupisiewicz, K., et al. (2007). dlk1/FA1 regulates the function of human bone marrow mesenchymal stem cells by modulating gene expression of pro-inflammatory cytokines and immune response-related factors. Journal of Biological chemistry, 282, 7339–7351.CrossRefPubMedGoogle Scholar
  45. 45.
    Samulewicz, S. J., Seitz, A., Clark, L., & Heber-Katz, E. (2002). Expression of preadipocyte factor-1(Pref-1), a delta-like protein, in healing mouse ears. Wound Repair and Regeneration, 10, 215–221.CrossRefPubMedGoogle Scholar
  46. 46.
    Jensen, C. H., Jauho, E. I., Santoni-Rugiu, E., Holmskov, U., Teisner, B., Tygstrup, N., et al. (2004). Transit-amplifying ductular (oval) cells and their hepatocytic progeny are characterized by a novel and distinctive expression of delta-like protein/preadipocyte factor 1/fetal antigen 1. American Journal of Pathology, 164, 1347–1359.PubMedGoogle Scholar
  47. 47.
    Crameri, R. M., Langberg, H., Magnusson, P., Jensen, C. H., Schroder, H. D., Olesen, J. L., et al. (2004). Changes in satellite cells in human skeletal muscle after a single bout of high intensity exercise. Journal of Physiology, 558, 333–340.CrossRefPubMedGoogle Scholar
  48. 48.
    Gamer, L. W., & Wright, C. V. (1995). Autonomous endodermal determination in Xenopus: regulation of expression of the pancreatic gene XlHbox 8. Developments in Biologicals, 171, 240–251.CrossRefGoogle Scholar
  49. 49.
    Ninomiya, H., Takahashi, S., Tanegashima, K., Yokota, C., & Asashima, M. (1999). Endoderm differentiation and inductive effect of activin-treated ectoderm in Xenopus. Development, Growth & Differentiation, 41, 391–400.CrossRefGoogle Scholar
  50. 50.
    Piepenburg, O., Grimmer, D., Williams, P. H., & Smith, J. C. (2004). Activin redux: specification of mesodermal pattern in Xenopus by graded concentrations of endogenous activin B. Development, 131, 4977–4986.CrossRefPubMedGoogle Scholar
  51. 51.
    Jiang, T. X., Yi, J. R., Ying, S. Y., & Chuong, C. M. (1993). Activin enhances chondrogenesis of limb bud cells: stimulation of precartilaginous mesenchymal condensations and expression of NCAM. Developments in Biologicals, 155, 545–557.CrossRefGoogle Scholar
  52. 52.
    Merino, R., Macias, D., Ganan, Y., Rodriguez-Leon, J., Economides, A. N., Rodriguez-Esteban, C., et al. (1999). Control of digit formation by activin signalling. Development, 126, 2161–2170.PubMedGoogle Scholar
  53. 53.
    Montero, J. A., Lorda-Diez, C. I., Ganan, Y., Macias, D., & Hurle, J. M. (2008). Activin/TGFbeta and BMP crosstalk determines digit chondrogenesis. Developments in Biologicals, 321, 343–356.CrossRefGoogle Scholar
  54. 54.
    Smas, C. M., Chen, L., Zhao, L., Latasa, M. J., & Sul, H. S. (1999). Transcriptional repression of pref-1 by glucocorticoids promotes 3T3–L1 adipocyte differentiation. Journal of Biological Chemistry, 274, 12632–12641.CrossRefPubMedGoogle Scholar
  55. 55.
    Hansen, L. H., Madsen, B., Teisner, B., Nielsen, J. H., & Billestrup, N. (1998). Characterization of the inhibitory effect of growth hormone on primary preadipocyte differentiation. Molecular Endocrinology, 12, 1140–1149.CrossRefPubMedGoogle Scholar
  56. 56.
    Boney, C. M., Fiedorek, F. T., Jr., Paul, S. R., & Gruppuso, P. A. (1996). Regulation of preadipocyte factor-1 gene expression during 3T3–L1 cell differentiation. Endocrinology, 137, 2923–2928.CrossRefPubMedGoogle Scholar
  57. 57.
    Schuldiner, M., Yanuka, O., Itskovitz-Eldor, J., Melton, D. A., & Benvenisty, N. (2000). Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 97, 11307–11312.CrossRefPubMedGoogle Scholar
  58. 58.
    Kramer, J., Hegert, C., Guan, K., Wobus, A. M., Muller, P. K., & Rohwedel, J. (2000). Embryonic stem cell-derived chondrogenic differentiation in vitro: activation by BMP-2 and BMP-4. Mechanisms of Development, 92, 193–205.CrossRefPubMedGoogle Scholar
  59. 59.
    Hwang, N. S., Varghese, S., Lee, H. J., Zhang, Z., Ye, Z., Bae, J., et al. (2008). In vivo commitment and functional tissue regeneration using human embryonic stem cell-derived mesenchymal cells. Proceedings of the National Academy of Sciences of the United States of America, 105, 20641–20646.CrossRefPubMedGoogle Scholar
  60. 60.
    Hwang, N. S., Varghese, S., Theprungsirikul, P., Canver, A., & Elisseeff, J. (2006). Enhanced chondrogenic differentiation of murine embryonic stem cells in hydrogels with glucosamine. Biomaterials, 27, 6015–6023.CrossRefPubMedGoogle Scholar
  61. 61.
    Hwang, N. S., Varghese, S., Zhang, Z., & Elisseeff, J. (2006). Chondrogenic differentiation of human embryonic stem cell-derived cells in arginine-glycine-aspartate-modified hydrogels. Tissue Engineering, 12, 2695–2706.CrossRefPubMedGoogle Scholar
  62. 62.
    Sui, Y., Clarke, T., & Khillan, J. S. (2003). Limb bud progenitor cells induce differentiation of pluripotent embryonic stem cells into chondrogenic lineage. Differentiation, 71, 578–585.CrossRefPubMedGoogle Scholar
  63. 63.
    Barberi, T., Willis, L. M., Socci, N. D., & Studer, L. (2005). Derivation of multipotent mesenchymal precursors from human embryonic stem cells. PLoS Medicine, 2, e161.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press 2009

Authors and Affiliations

  • Linda Harkness
    • 1
  • Hanna Taipaleenmaki
    • 2
  • Amer Mahmood
    • 1
  • Ulrik Frandsen
    • 1
  • Anna-Marja Saamanen
    • 2
  • Moustapha Kassem
    • 1
    • 3
  • Basem M. Abdallah
    • 1
  1. 1.Molecular Endocrinology laboratory (KMEB), Medical Biotechnology Centre, Odense University HospitalUniversity of South DenmarkOdense CDenmark
  2. 2.Department of Medical Biochemistry and Molecular BiologyUniversity of TurkuTurkuFinland
  3. 3.Stem Cell Unit, Department of AnatomyKing Saud UniveristyRiyadhSaudi Arabia

Personalised recommendations