Stem Cell Reviews and Reports

, Volume 5, Issue 4, pp 378–386 | Cite as

Embryonic Stem Cell Marker Expression Pattern in Human Mesenchymal Stem Cells Derived from Bone Marrow, Adipose Tissue, Heart and Dermis

  • Una Riekstina
  • Inese Cakstina
  • Vadims Parfejevs
  • Martin Hoogduijn
  • Georgs Jankovskis
  • Indrikis Muiznieks
  • Ruta Muceniece
  • Janis Ancans


Mesenchymal stem cells (MSCs) have been isolated from a variety of human tissues, e.g., bone marrow, adipose tissue, dermis, hair follicles, heart, liver, spleen, dental pulp. Due to their immunomodulatory and regenerative potential MSCs have shown promising results in preclinical and clinical studies for a variety of conditions, such as graft versus host disease (GvHD), Crohn’s disease, osteogenesis imperfecta, cartilage damage and myocardial infarction. MSC cultures are composed of heterogeneous cell populations. Complications in defining MSC arise from the fact that different laboratories have employed different tissue sources, extraction, and cultivation methods. Although cell-surface antigens of MSCs have been extensively explored, there is no conclusive evidence that unique stem cells markers are associated with these adult cells. Therefore the aim of this study was to examine expression of embryonic stem cell markers Oct4, Nanog, SOX2, alkaline phosphatase and SSEA-4 in adult mesenchymal stem cell populations derived from bone marrow, adipose tissue, dermis and heart. Furthermore, we tested whether human mesenchymal stem cells preserve tissue-specific differences under in vitro culture conditions. We found that bone marrow MSCs express embryonic stem cell markers Oct4, Nanog, alkaline phosphatase and SSEA-4, adipose tissue and dermis MSCs express Oct4, Nanog, SOX2, alkaline phosphatase and SSEA-4, whereas heart MSCs express Oct4, Nanog, SOX2 and SSEA-4. Our results also indicate that human adult mesenchymal stem cells preserve tissue-specific differences under in vitro culture conditions during early passages, as shown by distinct germ layer and embryonic stem cell marker expression patterns. Studies are now needed to determine the functional role of embryonic stem cell markers Oct4, Nanog and SOX2 in adult human MSCs.


Human mesenchymal stem cells Oct4 Nanog SOX2 SSEA-4 


  1. 1.
    Friedenstein, A. J., Piatetzky-Shapiro, I. I., & Petrakova, K. V. (1966). Osteogenesis in transplants of bone marrow cells. Journal of Embryology & Experimental Morphology, 16(3), 381–390.Google Scholar
  2. 2.
    Menicanin, D., Bartold, P. M., Zannettino, A. C., & Gronthos, S. (2009). Genomic profiling of mesenchymal stem cells. Stem Cell Reviews and Reports, 5(1), 36–50.CrossRefPubMedGoogle Scholar
  3. 3.
    Young, H. E., Steele, T. A., Bray, R. A., et al. (2001). Human reserve pluripotent mesenchymal stem cells are present in the connective tissues of skeletal muscle and dermis derived from fetal, adult, and geriatric donors. Anatomical Record, 264(1), 51–62.CrossRefPubMedGoogle Scholar
  4. 4.
    Phinney, D. G., & Prockop, D. J. (2007). Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair—current views. Stem Cells, 25(11), 2896–2902.CrossRefPubMedGoogle Scholar
  5. 5.
    Hoogduijn, M. J., Crop, M. J., Peeters, A. M., et al. (2007). Human heart, spleen, and perirenal fat-derived mesenchymal stem cells have immunomodulatory capacities. Stem Cells and Development, 16(4), 597–604.CrossRefPubMedGoogle Scholar
  6. 6.
    Kerkis, I., Kerkis, A., Dozortsev, D., et al. (2006). Isolation and characterization of a population of immature dental pulp stem cells expressing OCT-4 and other embryonic stem cell markers. Cells Tissues Organs, 184(3–4), 105–116.CrossRefPubMedGoogle Scholar
  7. 7.
    Beltrami, A. P., Cesselli, D., Bergamin, N., et al. (2007). Multipotent cells can be generated in vitro from several adult human organs (heart, liver, and bone marrow). Blood, 110(9), 3438–3446.CrossRefPubMedGoogle Scholar
  8. 8.
    Zuk, P. A., Zhu, M., Ashjian, P., et al. (2002). Human adipose tissue is a source of multipotent stem cells. Molecular Biology of the Cell, 13(12), 4279–4295.CrossRefPubMedGoogle Scholar
  9. 9.
    Giordano, A., Galderisi, U., & Marino, I. R. (2007). From the laboratory bench to the patient’s bedside: an update on clinical trials with mesenchymal stem cells. Journal of Cellular Physiology, 211(1), 27–35.CrossRefPubMedGoogle Scholar
  10. 10.
    Pountos, I., Corscadden, D., Emery, P., & Giannoudis, P. V. (2007). Mesenchymal stem cell tissue engineering: techniques for isolation, expansion and application. Injury, 38(Suppl 4), S23–S33.CrossRefPubMedGoogle Scholar
  11. 11.
    Dominici, M., Le, B. K., Mueller, I., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315–317.CrossRefPubMedGoogle Scholar
  12. 12.
    Pittenger, M. F., & Martin, B. J. (2004). Mesenchymal stem cells and their potential as cardiac therapeutics. Circulation Research, 95(1), 9–20.CrossRefPubMedGoogle Scholar
  13. 13.
    Chamberlain, G., Fox, J., Ashton, B., & Middleton, J. (2007). Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells, 25(11), 2739–2749.CrossRefPubMedGoogle Scholar
  14. 14.
    Ratajczak, M. Z., Kucia, M., Majka, M., Reca, R., & Ratajczak, J. (2004). Heterogeneous populations of bone marrow stem cells—are we spotting on the same cells from the different angles? Folia Histochemica et Cytobiologica, 42(3), 139–146.PubMedGoogle Scholar
  15. 15.
    Ho, A. D., Wagner, W., & Franke, W. (2008). Heterogeneity of mesenchymal stromal cell preparations. Cytotherapy, 10(4), 320–330.CrossRefPubMedGoogle Scholar
  16. 16.
    Adewumi, O., Aflatoonian, B., Ahrlund-Richter, L., et al. (2007). Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nature Biotechnology, 25(7), 803–816.CrossRefPubMedGoogle Scholar
  17. 17.
    Gang, E. J., Bosnakovski, D., Figueiredo, C. A., Visser, J. W., & Perlingeiro, R. C. (2007). SSEA-4 identifies mesenchymal stem cells from bone marrow. Blood, 109(4), 1743–1751.CrossRefPubMedGoogle Scholar
  18. 18.
    Pozzobon, M., Piccoli, M., Ditadi, A., et al. (2009). Mesenchymal stromal cells can be derived from bone marrow CD133+ cells: implications for therapy. Stem Cells and Development, 18(3), 497–510.CrossRefPubMedGoogle Scholar
  19. 19.
    Greco, S. J., Liu, K., & Rameshwar, P. (2007). Functional similarities among genes regulated by OCT4 in human mesenchymal and embryonic stem cells. Stem Cells, 25(12), 3143–3154.CrossRefPubMedGoogle Scholar
  20. 20.
    Lin, G., Garcia, M., Ning, H., et al. (2008). Defining stem and progenitor cells within adipose tissue. Stem Cells and Development, 17(6), 1053–1063.CrossRefPubMedGoogle Scholar
  21. 21.
    Kotoula, V., Papamichos, S. I., & Lambropoulos, A. F. (2008). Revisiting OCT4 expression in peripheral blood mononuclear cells. Stem Cells, 26(1), 290–291.CrossRefPubMedGoogle Scholar
  22. 22.
    Lengler, J., Bittner, T., Munster, D., Gawad, A., & Graw, J. (2005). Agonistic and antagonistic action of AP2, Msx2, Pax6, Prox1 AND Six3 in the regulation of Sox2 expression. Ophthalmic Research, 37(6), 301–309.CrossRefPubMedGoogle Scholar
  23. 23.
    Lee, R. H., Kim, B., Choi, I., et al. (2004). Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cellular Physiology and Biochemistry, 14(4–6), 311–324.CrossRefPubMedGoogle Scholar
  24. 24.
    Toma, J. G., McKenzie, I. A., Bagli, D., & Miller, F. D. (2005). Isolation and characterization of multipotent skin-derived precursors from human skin. Stem Cells, 23(6), 727–737.CrossRefPubMedGoogle Scholar
  25. 25.
    Riekstina, U., Muceniece, R., Cakstina, I., Muiznieks, I., & Ancans, J. (2008). Characterization of human skin-derived mesenchymal stem cell proliferation rate in different growth conditions. Cytotechnology, 58(3), 153–162.CrossRefPubMedGoogle Scholar
  26. 26.
    Hoogduijn, M. J., Crop, M. J., Peeters, A. M., et al. (2009). Donor-derived mesenchymal stem cells remain present and functional in the transplanted human heart. American Journal of Transplantation, 9(1), 222–230.CrossRefPubMedGoogle Scholar
  27. 27.
    Limana, F., Zacheo, A., Mocini, D., et al. (2007). Identification of myocardial and vascular precursor cells in human and mouse epicardium. Circulation Research, 101(12), 1255–1265.CrossRefPubMedGoogle Scholar
  28. 28.
    Kazemnejad, S., Allameh, A., Soleimani, M., et al. (2009). Biochemical and molecular characterization of hepatocyte-like cells derived from human bone marrow mesenchymal stem cells on a novel three-dimensional biocompatible nanofibrous scaffold. Journal of Gastroenterology and Hepatology, 24(2), 278–287.CrossRefPubMedGoogle Scholar
  29. 29.
    Woodbury, D., Schwarz, E. J., Prockop, D. J., & Black, I. B. (2000). Adult rat and human bone marrow stromal cells differentiate into neurons. Journal of Neuroscience Research, 61(4), 364–370.CrossRefPubMedGoogle Scholar
  30. 30.
    da Silva, M. L., Caplan, A. I., & Nardi, N. B. (2008). In search of the in vivo identity of mesenchymal stem cells. Stem Cells, 26(9), 2287–2299.CrossRefGoogle Scholar
  31. 31.
    Rodda, D. J., Chew, J. L., Lim, L. H., et al. (2005). Transcriptional regulation of nanog by OCT4 and SOX2. Journal of Biological Chemistry, 280(26), 24731–24737.CrossRefPubMedGoogle Scholar
  32. 32.
    Barraud, P., Stott, S., Mollgard, K., Parmar, M., & Bjorklund, A. (2007). In vitro characterization of a human neural progenitor cell coexpressing SSEA4 and CD133. Journal of Neuroscience Research, 85(2), 250–259.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media 2009

Authors and Affiliations

  • Una Riekstina
    • 1
  • Inese Cakstina
    • 2
  • Vadims Parfejevs
    • 1
  • Martin Hoogduijn
    • 4
  • Georgs Jankovskis
    • 3
  • Indrikis Muiznieks
    • 2
  • Ruta Muceniece
    • 1
  • Janis Ancans
    • 2
  1. 1.Faculty of MedicineUniversity of LatviaRigaLatvia
  2. 2.Faculty of BiologyUniversity of LatviaRigaLatvia
  3. 3.Institute of Experimental and Clinical MedicineUniversity of LatviaRigaLatvia
  4. 4.Department of Internal Medicine, Transplantation LaboratoryErasmus Medical CenterRotterdamThe Netherlands

Personalised recommendations