Stem Cell Reviews and Reports

, Volume 5, Issue 3, pp 266–277

Cord Blood—An Alternative Source for Bone Regeneration

  • Marcus Jäger
  • Christoph Zilkens
  • Bernd Bittersohl
  • Rüdiger Krauspe
Article

Abstract

Bone regeneration is one of the best investigated pathways in mesenchymal stromal cell (MSC) biology. Therfore strong efforts have been made to introduce tissue engineering and cell therapeutics as an alternative treatement option for patients with bone defects. This review of the literature gives an overview of MSC biology aiming for clinical application including advantages but also specific challenges and problems which are associated with cord blood derived stromal cell (CB-MSC) as a source for bone regeneration. The use of postnatal CB-MSC is ethically uncomplicated and requires no invasive harvesting procedure. Moreover, most data document a high osteogenic potential of CB-MCS and also low immunoreactivity compared with other MSC types. The expression profile of CB-MSC during osteogenic differentiation shows similarities to that of other MSC types. Within the umbilical cord different MSC types have been characterized which are potent to differentiate into osteoblasts. In contrast to a large number of in vitro investigations there are only few in vivo studies avaiable so far.

Keywords

Cord blood Mesenchymal stromal cell Osteoblast Bone defect 

References

  1. 1.
    Jäger, M., Jelinek, E. M., Wess, K. M., et al. (2009). Bone marrow concentrate: a novel strategy for bone defect treatment. Current Stem Cell Research & Therapy, 4(1), 34–43.CrossRefGoogle Scholar
  2. 2.
    Ekman, M., Johnell, O., & Lidgren, L. (2005). The economic cost of low back pain in Sweden in 2001. Acta Orthopaedica, 76(2), 275–284.PubMedGoogle Scholar
  3. 3.
    Schmidt, C. O., & Kohlmann, T. (2005). What do we know about the symptoms of back pain? Epidemiological results on prevalence, incidence, progression and risk factors. Z Orthop Ihre Grenzgeb, 143(3), 292–298.PubMedCrossRefGoogle Scholar
  4. 4.
    Williams, D. A., Feuerstein, M., Durbin, D., & Pezzullo, J. (1998). Health care and indemnity costs across the natural history of disability in occupational low back pain. Spine, 23(21), 2329–2336.PubMedCrossRefGoogle Scholar
  5. 5.
    Abenhaim, L., & Suissa, S. (1987). Importance and economic burden of occupational back pain: a study of 2, 500 cases representative of Quebec. Journal of Occupational Medicine, 29(8), 670–674.PubMedGoogle Scholar
  6. 6.
    Moffett, J. K., Torgerson, D., Bell-Syer, S., et al. (1999). Randomised controlled trial of exercise for low back pain: clinical outcomes, costs, and preferences. BMJ, 319(7205), 279–283.PubMedGoogle Scholar
  7. 7.
    Bassols, A., Bosch, F., Campillo, M., Canellas, M., & Banos, J. E. (1999). An epidemiological comparison of pain complaints in the general population of Catalonia (Spain). Pain, 83(1), 9–16.PubMedCrossRefGoogle Scholar
  8. 8.
    Kim, H. S., Choi, J. W., Chang, S. H., Lee, K. S., & Oh, J. Y. (2005). Treatment duration and cost of work-related low back pain in Korea. Journal of Korean Medical Science, 20(1), 127–131.PubMedGoogle Scholar
  9. 9.
    Dagenais, S., Caro, J., & Haldeman, S. (2008). A systematic review of low back pain cost of illness studies in the United States and internationally. Spine Journal, 8(1), 8–20.PubMedCrossRefGoogle Scholar
  10. 10.
    Bray, G. A., & Bellanger, T. (2006). Epidemiology, trends, and morbidities of obesity and the metabolic syndrome. Endocrine, 29(1), 109–117.PubMedCrossRefGoogle Scholar
  11. 11.
    Visscher, T. L., & Seidell, J. C. (2001). The public health impact of obesity. Annual Review of Public Health, 22, 355–375.PubMedCrossRefGoogle Scholar
  12. 12.
    Espehaug, B., Furnes, O., Havelin, L. I., Engesaeter, L. B., Vollset, S. E., & Kindseth, O. (2006). Registration completeness in the Norwegian Arthroplasty Register. Acta Orthopaedica, 77(1), 49–56.PubMedCrossRefGoogle Scholar
  13. 13.
    Furnes, O., Lie, S. A., Espehaug, B., Vollset, S. E., Engesaeter, L. B., & Havelin, L. I. (2001). Hip disease and the prognosis of total hip replacements. A review of 53,698 primary total hip replacements reported to the Norwegian Arthroplasty Register 1987-99. Journal of Bone and Joint Surgery. British, 83(4), 579–586.CrossRefGoogle Scholar
  14. 14.
    Henricson, A., Skoog, A., & Carlsson, A. (2007). The Swedish Ankle Arthroplasty Register: an analysis of 531 arthroplasties between 1993 and 2005. Acta Orthopaedica, 78(5), 569–574.PubMedCrossRefGoogle Scholar
  15. 15.
    Hirvonen, J., Blom, M., Tuominen, U., et al. (2006). Health-related quality of life in patients waiting for major joint replacement. A comparison between patients and population controls. Health Qual Life Outcomes, 4, 3.PubMedCrossRefGoogle Scholar
  16. 16.
    Tillmann, F. P., Jager, M., Blondin, D., et al. (2008). Post-transplant distal limb syndrome: clinical diagnosis and long-term outcome in 37 renal transplant recipients. Transplant International, 21(6), 534–546.CrossRefGoogle Scholar
  17. 17.
    Tillmann, F. P., Jager, M., Blondin, D., et al. (2007). Intravenous iloprost: a new therapeutic option for patients with post-transplant distal limb syndrome (PTDLS). American Journal of Transplantation, 7(3), 667–671.PubMedCrossRefGoogle Scholar
  18. 18.
    Guichelaar, M. M., Schmoll, J., Malinchoc, M., & Hay, J. E. (2007). Fractures and avascular necrosis before and after orthotopic liver transplantation: long-term follow-up and predictive factors. Hepatology, 46(4), 1198–1207.PubMedCrossRefGoogle Scholar
  19. 19.
    Patel, B., Richards, S. M., Rowe, J. M., Goldstone, A. H., & Fielding, A. K. (2008). High incidence of avascular necrosis in adolescents with acute lymphoblastic leukaemia: a UKALL XII analysis. Leukemia, 22(2), 308–312.PubMedCrossRefGoogle Scholar
  20. 20.
    Talamo, G., Angtuaco, E., Walker, R. C., et al. (2005). Avascular necrosis of femoral and/or humeral heads in multiple myeloma: results of a prospective study of patients treated with dexamethasone-based regimens and high-dose chemotherapy. Journal of Clinical Oncology, 23(22), 5217–5223.PubMedCrossRefGoogle Scholar
  21. 21.
    Warwick, B. J., Caristo, V., Hartin, N., Ihsleish, W., Perera, C., & Van der Wall, H. (2006). MRI-negative, bone scintigram-positive in early osteonecrosis of the knees. Clinical Nuclear Medicine, 31(12), 750–753.PubMedCrossRefGoogle Scholar
  22. 22.
    Ullmark, G., Sorensen, J., & Nilsson, O. (2009). Bone healing of severe acetabular defects after revision arthroplasty. Acta Orthopaedica, 80(2), 179–183.PubMedGoogle Scholar
  23. 23.
    Bapat, M. R., Chaudhary, K., Garg, H., & Laheri, V. (2008). Reconstruction of large iliac crest defects after graft harvest using autogenous rib graft: a prospective controlled study. Spine, 33(23), 2570–2575.PubMedCrossRefGoogle Scholar
  24. 24.
    Pollock, R., Alcelik, I., Bhatia, C., et al. (2008). Donor site morbidity following iliac crest bone harvesting for cervical fusion: a comparison between minimally invasive and open techniques. European Spine Journal, 17(6), 845–852.PubMedCrossRefGoogle Scholar
  25. 25.
    Campagnoli, C., Bellantuono, I., Kumar, S., Fairbairn, L. J., Roberts, I., & Fisk, N. M. (2002). High transduction efficiency of circulating first trimester fetal mesenchymal stem cells: potential targets for in utero ex vivo gene therapy. BJOG, 109(8), 952–954.PubMedCrossRefGoogle Scholar
  26. 26.
    Campagnoli, C., Roberts, I. A., Kumar, S., Bennett, P. R., Bellantuono, I., & Fisk, N. M. (2001). Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood, 98(8), 2396–2402.PubMedCrossRefGoogle Scholar
  27. 27.
    O’Donoghue, K., Choolani, M., Chan, J., et al. (2003). Identification of fetal mesenchymal stem cells in maternal blood: implications for non-invasive prenatal diagnosis. Molecular Human Reproduction, 9(8), 497–502.PubMedCrossRefGoogle Scholar
  28. 28.
    Le Blanc, K., Gotherstrom, C., Ringden, O., et al. (2005). Fetal mesenchymal stem-cell engraftment in bone after in utero transplantation in a patient with severe osteogenesis imperfecta. Transplantation, 79(11), 1607–1614.PubMedCrossRefGoogle Scholar
  29. 29.
    Guillot, P. V., Abass, O., Bassett, J. H., et al. (2008). Intrauterine transplantation of human fetal mesenchymal stem cells from first-trimester blood repairs bone and reduces fractures in osteogenesis imperfecta mice. Blood, 111(3), 1717–1725.PubMedCrossRefGoogle Scholar
  30. 30.
    in 't Anker, P. S., Noort, W. A., Scherjon, S. A., et al. (2003). Mesenchymal stem cells in human second-trimester bone marrow, liver, lung, and spleen exhibit a similar immunophenotype but a heterogeneous multilineage differentiation potential. Haematologica, 88(8), 845–852.Google Scholar
  31. 31.
    Noort, W. A., Kruisselbrink, A. B., in't Anker, P. S., et al. (2002). Mesenchymal stem cells promote engraftment of human umbilical cord blood-derived CD34(+) cells in NOD/SCID mice. Experimental Hematology, 30(8), 870–878.PubMedCrossRefGoogle Scholar
  32. 32.
    Son, B. R., Marquez-Curtis, L. A., Kucia, M., et al. (2006). Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases. Stem Cells, 24(5), 1254–1264.PubMedCrossRefGoogle Scholar
  33. 33.
    Dao, M. A., Creer, M. H., Nolta, J. A., & Verfaillie, C. M. (2007). Biology of umbilical cord blood progenitors in bone marrow niches. Blood, 110(1), 74–81.PubMedCrossRefGoogle Scholar
  34. 34.
    Ceradini, D. J., Kulkarni, A. R., Callaghan, M. J., et al. (2004). Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nature Medicine, 10(8), 858–864.PubMedCrossRefGoogle Scholar
  35. 35.
    Nodwell, A., Carmichael, L., Ross, M., & Richardson, B. (2005). Placental compared with umbilical cord blood to assess fetal blood gas and acid-base status. Obstetrics and Gynecology, 105(1), 129–138.PubMedGoogle Scholar
  36. 36.
    Antoniou, E. S., Sund, S., Homsi, E. N., Challenger, L. F., & Rameshwar, P. (2004). A theoretical simulation of hematopoietic stem cells during oxygen fluctuations: prediction of bone marrow responses during hemorrhagic shock. Shock, 22(5), 415–422.PubMedCrossRefGoogle Scholar
  37. 37.
    Kuznetsov, S. A., Mankani, M. H., Gronthos, S., Satomura, K., Bianco, P., & Robey, P. G. (2001). Circulating skeletal stem cells. Journal of Cell Biology, 153(5), 1133–1140.PubMedCrossRefGoogle Scholar
  38. 38.
    Kuznetsov, S. A., Mankani, M. H., Leet, A. I., Ziran, N., Gronthos, S., & Robey, P. G. (2007). Circulating connective tissue precursors: extreme rarity in humans and chondrogenic potential in guinea pigs. Stem Cells, 25(7), 1830–1839.PubMedCrossRefGoogle Scholar
  39. 39.
    Grove, J. E., Bruscia, E., & Krause, D. S. (2004). Plasticity of bone marrow-derived stem cells. Stem Cells, 22(4), 487–500.PubMedCrossRefGoogle Scholar
  40. 40.
    Heike, T., & Nakahata, T. (2004). Stem cell plasticity in the hematopoietic system. International Journal of Hematology, 79(1), 7–14.PubMedCrossRefGoogle Scholar
  41. 41.
    Herzog, E. L., Chai, L., & Krause, D. S. (2003). Plasticity of marrow-derived stem cells. Blood, 102(10), 3483–3493.PubMedCrossRefGoogle Scholar
  42. 42.
    Park, J., Setter, V., Wixler, V., & Schneider, H. (2009). Umbilical cord blood stem cells: induction of differentiation into mesenchymal lineages by cell-cell contacts with various mesenchymal cells. Tissue Engineering (in press).Google Scholar
  43. 43.
    Akino, K., Mineda, T., & Akita, S. (2005). Early cellular changes of human mesenchymal stem cells and their interaction with other cells. Wound Repair and Regeneration, 13(4), 434–440.PubMedCrossRefGoogle Scholar
  44. 44.
    Mirza, A., Hyvelin, J. M., Rochefort, G. Y., et al. (2008). Undifferentiated mesenchymal stem cells seeded on a vascular prosthesis contribute to the restoration of a physiologic vascular wall. Journal of Vascular Surgery, 47(6), 1313–1321.PubMedCrossRefGoogle Scholar
  45. 45.
    Mizokami, T., Hisha, H., Okazaki, S., et al. (2009). Preferential expansion of human umbilical cord blood-derived CD34-positive cells on major histocompatibility complex-matched amnion-derived mesenchymal stem cells. Haematologica, 94(5), 618–628.PubMedCrossRefGoogle Scholar
  46. 46.
    Fan, X., Liu, T., Liu, Y., Ma, X., & Cui, Z. (2009). Optimization of primary culture condition for mesenchymal stem cells derived from umbilical cord blood with factorial design. Biotechnology Progress, 25(2), 499–507.PubMedCrossRefGoogle Scholar
  47. 47.
    Friedman, R., Betancur, M., Boissel, L., Tuncer, H., Cetrulo, C., & Klingemann, H. (2007). Umbilical cord mesenchymal stem cells: adjuvants for human cell transplantation. Biology of Blood and Marrow Transplantation, 13(12), 1477–1486.PubMedCrossRefGoogle Scholar
  48. 48.
    Nissen-Meyer, L. S., Jemtland, R., Gautvik, V. T., et al. (2007). Osteopenia, decreased bone formation and impaired osteoblast development in Sox4 heterozygous mice. Journal of Cell Science, 120(Pt 16), 2785–2795.PubMedCrossRefGoogle Scholar
  49. 49.
    Lang, I., Schweizer, A., Hiden, U., et al. (2008). Human fetal placental endothelial cells have a mature arterial and a juvenile venous phenotype with adipogenic and osteogenic differentiation potential. Differentiation; Research in Biological Diversity, 76(10), 1031–1043.PubMedGoogle Scholar
  50. 50.
    Pittenger, M. F. (2008). Mesenchymal stem cells from adult bone marrow. Methods in Molecular Biology, 449, 27–44.PubMedCrossRefGoogle Scholar
  51. 51.
    Dominici, M., Le Blanc, K., Mueller, I., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315–317.PubMedCrossRefGoogle Scholar
  52. 52.
    Pittenger, M. F., Mackay, A. M., Beck, S. C., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284(5411), 143–147.PubMedCrossRefGoogle Scholar
  53. 53.
    Rao, M. S., & Mattson, M. P. (2001). Stem cells and aging: expanding the possibilities. Mechanisms of Ageing and Development, 122(7), 713–734.PubMedCrossRefGoogle Scholar
  54. 54.
    Erices, A., Conget, P., & Minguell, J. J. (2000). Mesenchymal progenitor cells in human umbilical cord blood. British Journal Haematology, 109(1), 235–242.CrossRefGoogle Scholar
  55. 55.
    Erices, A. A., Allers, C. I., Conget, P. A., Rojas, C. V., & Minguell, J. J. (2003). Human cord blood-derived mesenchymal stem cells home and survive in the marrow of immunodeficient mice after systemic infusion. Cell Transplantation, 12(6), 555–561.PubMedGoogle Scholar
  56. 56.
    Rosada, C., Justesen, J., Melsvik, D., Ebbesen, P., & Kassem, M. (2003). The human umbilical cord blood: a potential source for osteoblast progenitor cells. Calcified Tissue International, 72(2), 135–142.PubMedCrossRefGoogle Scholar
  57. 57.
    Kögler, G., Sensken, S., & Wernet, P. (2006). Comparative generation and characterization of pluripotent unrestricted somatic stem cells with mesenchymal stem cells from human cord blood. Experimental Hematology, 34(11), 1589–1595.PubMedCrossRefGoogle Scholar
  58. 58.
    Fallahi-Sichani, M., Soleimani, M., Najafi, S. M., Kiani, J., Arefian, E., & Atashi, A. (2007). In vitro differentiation of cord blood unrestricted somatic stem cells expressing dopamine-associated genes into neuron-like cells. Cell Biology International, 31(3), 299–303.PubMedCrossRefGoogle Scholar
  59. 59.
    Greschat, S., Schira, J., Kury, P., et al. (2008). Unrestricted somatic stem cells from human umbilical cord blood can be differentiated into neurons with a dopaminergic phenotype. Stem Cells and Development, 17(2), 221–232.PubMedCrossRefGoogle Scholar
  60. 60.
    Sensken, S., Waclawczyk, S., Knaupp, A. S., et al. (2007). In vitro differentiation of human cord blood-derived unrestricted somatic stem cells towards an endodermal pathway. Cytotherapy, 9(4), 362–378.PubMedCrossRefGoogle Scholar
  61. 61.
    Jäger, M., Sager, M., Knipper, A., et al. (2004). In vivo and in vitro bone regeneration from cord blood derived mesenchymal stem cells. Orthopade, 33(12), 1361–1372.PubMedCrossRefGoogle Scholar
  62. 62.
    Degistirici, O., Jager, M., & Knipper, A. (2008). Applicability of cord blood-derived unrestricted somatic stem cells in tissue engineering concepts. Cell Proliferation, 41(3), 421–440.PubMedCrossRefGoogle Scholar
  63. 63.
    Jäger, M., Bachmann, R., Scharfstadt, A., & Krauspe, R. (2006). Ovine cord blood accommodates multipotent mesenchymal progenitor cells. In Vivo, 20(2), 205–214.PubMedGoogle Scholar
  64. 64.
    Jäger, M., Degistirici, O., Knipper, A., Fischer, J., Sager, M., & Krauspe, R. (2007). Bone healing and migration of cord blood-derived stem cells into a critical size femoral defect after xenotransplantation. Journal of Bone and Mineral Research, 22(8), 1224–1233.PubMedCrossRefGoogle Scholar
  65. 65.
    Jäger, M., & Krauspe, R. (2007). Antigen expression of cord blood derived stem cells under osteogenic stimulation in vitro. Cell Biology International, 31(9), 950–957.PubMedCrossRefGoogle Scholar
  66. 66.
    Jäger, M., Wild, A., Lensing-Höhn, S., & Krauspe, R. (2003). Influence of different culture solutions on osteoblastic differentiation in cord blood and bone marrow derived progenitor cells. Biomedizinische Technik, 48(9), 241–244.PubMedCrossRefGoogle Scholar
  67. 67.
    Kilian, O., Flesch, I., Wenisch, S., et al. (2004). Effects of platelet growth factors on human mesenchymal stem cells and human endothelial cells in vitro. European Journal of Medical Research, 9(7), 337–344.PubMedGoogle Scholar
  68. 68.
    Trombi, L., Pacini, S., Montali, M., et al. (2009). Selective culture of mesodermal progenitor cells (MPCs). Stem Cells and Development (in press).Google Scholar
  69. 69.
    Carinci, F., Pezzetti, F., Spina, A. M., et al. (2005). Effect of Vitamin C on pre-osteoblast gene expression. Archives of Oral Biology, 50(5), 481–496.PubMedCrossRefGoogle Scholar
  70. 70.
    Wagner, T. U. (2007). Bone morphogenetic protein signaling in stem cells–one signal, many consequences. Febs Journal, 274(12), 2968–2976.PubMedCrossRefGoogle Scholar
  71. 71.
    Jäger, M., Fischer, J., Dohrn, W., et al. (2008). Dexamethasone modulates BMP-2 effects on mesenchymal stem cells in vitro. Journal of Orthopaedic Research, 26(11), 1440–1448.PubMedCrossRefGoogle Scholar
  72. 72.
    Duque, G., & Rivas, D. (2007). Alendronate has an anabolic effect on bone through the differentiation of mesenchymal stem cells. Journal of Bone and Mineral Research, 22(10), 1603–1611.PubMedCrossRefGoogle Scholar
  73. 73.
    Tang, L. Y., Kimmel, D. B., Jee, W. S., & Yee, J. A. (1996). Functional characterization of prostaglandin E2 inducible osteogenic colony forming units in cultures of cells isolated from the neonatal rat calvarium. Journal of Cellular Physiology, 166(1), 76–83.PubMedCrossRefGoogle Scholar
  74. 74.
    Knippenberg, M., Helder, M. N., de Blieck-Hogervorst, J. M., Wuisman, P. I., & Klein-Nulend, J. (2007). Prostaglandins differentially affect osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells. Tissue Engineering, 13(10), 2495–2503.PubMedCrossRefGoogle Scholar
  75. 75.
    Ishida, Y., Tertinegg, I., & Heersche, J. N. (1996). Progesterone and dexamethasone stimulate proliferation and differentiation of osteoprogenitors and progenitors for adipocytes and macrophages in cell populations derived from adult rat vertebrae. Journal of Bone and Mineral Research, 11(7), 921–930.PubMedCrossRefGoogle Scholar
  76. 76.
    Gambaro, K., Aberdam, E., Virolle, T., Aberdam, D., & Rouleau, M. (2006). BMP-4 induces a Smad-dependent apoptotic cell death of mouse embryonic stem cell-derived neural precursors. Cell Death and Differentiation, 13(7), 1075–1087.PubMedCrossRefGoogle Scholar
  77. 77.
    Block, J. E. (2005). The role and effectiveness of bone marrow in osseous regeneration. Medical Hypotheses, 65(4), 740–747.PubMedCrossRefGoogle Scholar
  78. 78.
    Hermann, P. C., Huber, S. L., Herrler, T., et al. (2008). Concentration of bone marrow total nucleated cells by a point-of-care device provides a high yield and preserves their functional activity. Cell Transplantation, 16(10), 1059–1069.PubMedCrossRefGoogle Scholar
  79. 79.
    Rosset, P., & Coipeau, P. (2007). What's new in fundamental research: osteogenesis and stem cells. Revue de Chirurgie Orthopédique et Réparatrice de l'Appareil Moteur, 93(4 Suppl), 2S55–2S58.PubMedGoogle Scholar
  80. 80.
    Jäger, M., Jelinek, E. M., Wess, K. M., et al. (2008). Erste Erfahrungen mit einem kommerziellen Knochenmark-Konzentrations-System zur Behandlung von lokalen Knochenheilungsstörungen und –defekten. In: Deutscher Kongress für Orthopädie und Unfallchirurgie. Berlin.Google Scholar
  81. 81.
    Koch, T. G., Heerkens, T., Thomsen, P. D., & Betts, D. H. (2007). Isolation of mesenchymal stem cells from equine umbilical cord blood. BMC Biotechnology, 7, 26.PubMedCrossRefGoogle Scholar
  82. 82.
    Penolazzi, L., Lambertini, E., Tavanti, E., et al. (2008). Evaluation of chemokine and cytokine profiles in osteoblast progenitors from umbilical cord blood stem cells by BIO-PLEX technology. Cell Biology International, 32(2), 320–325.PubMedCrossRefGoogle Scholar
  83. 83.
    Kim, J. S., Lee, H. K., Kim, M. R., Kim, P. K., & Kim, C. W. (2008). Differentially expressed proteins of mesenchymal stem cells derived from human cord blood (hUCB) during osteogenic differentiation. Bioscience, Biotechnology, and Biochemistry, 72(9), 2309–2317.PubMedCrossRefGoogle Scholar
  84. 84.
    Jin, H. J., Park, S. K., Oh, W., Yang, Y. S., Kim, S. W., & Choi, S. J. (2009). Down-regulation of CD105 is associated with multi-lineage differentiation in human umbilical cord blood-derived mesenchymal stem cells. Biochemical and Biophysical Research Communications, 381(4), 676–681.PubMedCrossRefGoogle Scholar
  85. 85.
    Akira, S., & Kishimoto, T. (1992). IL-6 and NF-IL6 in acute-phase response and viral infection. Immunological Reviews, 127, 25–50.PubMedCrossRefGoogle Scholar
  86. 86.
    Kishimoto, T., Akira, S., & Taga, T. (1992). IL-6 receptor and mechanism of signal transduction. International Journal of Immunopharmacology, 14(3), 431–438.PubMedCrossRefGoogle Scholar
  87. 87.
    de Grooth, R., Kawilarang-de Haas, E. W., van de Sande-Rijkers, C. M., & Nijweide, P. J. (1998). The role of osteoblast density and endogenous interleukin-6 production in osteoclast formation from the hemopoietic stem cell line FDCP-MIX C2GM in coculture with primary osteoblasts. Calcified Tissue International, 63(1), 57–62.PubMedCrossRefGoogle Scholar
  88. 88.
    Udagawa, N., Takahashi, N., Katagiri, T., et al. (1995). Interleukin (IL)-6 induction of osteoclast differentiation depends on IL-6 receptors expressed on osteoblastic cells but not on osteoclast progenitors. Journal of Experimental Medicine, 182(5), 1461–1468.PubMedCrossRefGoogle Scholar
  89. 89.
    van't Hof, R. J., von Lindern, M., Nijweide, P. J., & Beug, H. (1997). Stem cell factor stimulates chicken osteoclast activity in vitro. FASEB Journal, 11(4), 287–293.Google Scholar
  90. 90.
    Theoleyre, S., Wittrant, Y., Tat, S. K., Fortun, Y., Redini, F., & Heymann, D. (2004). The molecular triad OPG/RANK/RANKL: involvement in the orchestration of pathophysiological bone remodeling. Cytokine and Growth Factor Reviews, 15(6), 457–475.PubMedCrossRefGoogle Scholar
  91. 91.
    Huang, Z., Nelson, E. R., Smith, R. L., & Goodman, S. B. (2007). The sequential expression profiles of growth factors from osteoprogenitors [correction of osteroprogenitors] to osteoblasts in vitro. Tissue Engineering, 13(9), 2311–2320.PubMedCrossRefGoogle Scholar
  92. 92.
    Secco, M., Zucconi, E., Vieira, N. M., et al. (2008). Multipotent stem cells from umbilical cord: cord is richer than blood. Stem Cells, 26(1), 146–150.PubMedCrossRefGoogle Scholar
  93. 93.
    Kern, S., Eichler, H., Stoeve, J., Kluter, H., & Bieback, K. (2006). Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells, 24(5), 1294–1301.PubMedCrossRefGoogle Scholar
  94. 94.
    Kosmacheva, S. M., Volk, M. V., Yeustratenka, T. A., Severin, I. N., & Potapnev, M. P. (2008). In vitro growth of human umbilical blood mesenchymal stem cells and their differentiation into chondrocytes and osteoblasts. Bulletin of Experimental Biology and Medicine, 145(1), 141–145.PubMedCrossRefGoogle Scholar
  95. 95.
    Musina, R. A., Bekchanova, E. S., Belyavskii, A. V., Grinenko, T. S., & Sukhikh, G. T. (2007). Umbilical cord blood mesenchymal stem cells. Bulletin of Experimental Biology and Medicine, 143(1), 127–131.PubMedCrossRefGoogle Scholar
  96. 96.
    Bieback, K., & Kluter, H. (2007). Mesenchymal stromal cells from umbilical cord blood. Current Stem Cell Research & Therapy, 2(4), 310–323.CrossRefGoogle Scholar
  97. 97.
    Chang, Y. J., Tseng, C. P., Hsu, L. F., Hsieh, T. B., & Hwang, S. M. (2006). Characterization of two populations of mesenchymal progenitor cells in umbilical cord blood. Cell Biology International, 30(6), 495–499.PubMedCrossRefGoogle Scholar
  98. 98.
    Chang, Y. J., Shih, D. T., Tseng, C. P., Hsieh, T. B., Lee, D. C., & Hwang, S. M. (2006). Disparate mesenchyme-lineage tendencies in mesenchymal stem cells from human bone marrow and umbilical cord blood. Stem Cells, 24(3), 679–685.PubMedCrossRefGoogle Scholar
  99. 99.
    Garcia-Castro, J., Balas, A., Ramirez, M., et al. (2007). Mesenchymal stem cells are of recipient origin in pediatric transplantations using umbilical cord blood, peripheral blood, or bone marrow. Journal of Pediatric Hematology/Oncology, 29(6), 388–392.PubMedCrossRefGoogle Scholar
  100. 100.
    Gennery, A. R., & Cant, A. J. (2007). Cord blood stem cell transplantation in primary immune deficiencies. Current Opinion in Allergy and Clinical Immunology, 7(6), 528–534.PubMedCrossRefGoogle Scholar
  101. 101.
    Baxter, M. A., Wynn, R. F., Jowitt, S. N., Wraith, J. E., Fairbairn, L. J., & Bellantuono, I. (2004). Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion. Stem Cells, 22(5), 675–682.PubMedCrossRefGoogle Scholar
  102. 102.
    Hilton, M. J., Tu, X., Wu, X., et al. (2008). Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation. Nature Medicine, 14(3), 306–314.PubMedCrossRefGoogle Scholar
  103. 103.
    Zhou, S., Greenberger, J. S., Epperly, M. W., et al. (2008). Age-related intrinsic changes in human bone-marrow-derived mesenchymal stem cells and their differentiation to osteoblasts. Aging Cell, 7(3), 335–343.PubMedCrossRefGoogle Scholar
  104. 104.
    Leskela, H. V., Risteli, J., Niskanen, S., Koivunen, J., Ivaska, K. K., & Lehenkari, P. (2003). Osteoblast recruitment from stem cells does not decrease by age at late adulthood. Biochemical and Biophysical Research Communications, 311(4), 1008–1013.PubMedCrossRefGoogle Scholar
  105. 105.
    Roura, S., Farre, J., Soler-Botija, C., et al. (2006). Effect of aging on the pluripotential capacity of human CD105+ mesenchymal stem cells. European Journal of Heart Failure, 8(6), 555–563.PubMedCrossRefGoogle Scholar
  106. 106.
    Pignolo, R. J., Suda, R. K., McMillan, E. A., et al. (2008). Defects in telomere maintenance molecules impair osteoblast differentiation and promote osteoporosis. Aging Cell, 7(1), 23–31.PubMedCrossRefGoogle Scholar
  107. 107.
    Ramanadham, S., Yarasheski, K. E., Silva, M. J., et al. (2008). Age-related changes in bone morphology are accelerated in group VIA phospholipase A2 (iPLA2beta)-null mice. American Journal of Pathology, 172(4), 868–881.PubMedCrossRefGoogle Scholar
  108. 108.
    Lee, S. T., Maeng, H., Chwae, Y. J., Oh, D. J., Kim, Y. M., & Yang, W. I. (2008). Effect of mesenchymal stem cell transplantation on the engraftment of human hematopoietic stem cells and leukemic cells in mice model. International Journal of Hematology, 87(3), 327–337.PubMedCrossRefGoogle Scholar
  109. 109.
    Tisato, V., Naresh, K., Girdlestone, J., Navarrete, C., & Dazzi, F. (2007). Mesenchymal stem cells of cord blood origin are effective at preventing but not treating graft-versus-host disease. Leukemia, 21(9), 1992–1999.PubMedCrossRefGoogle Scholar
  110. 110.
    Majhail, N. S., Brunstein, C. G., Tomblyn, M., et al. (2008). Reduced-intensity allogeneic transplant in patients older than 55 years: unrelated umbilical cord blood is safe and effective for patients without a matched related donor. Biology of Blood and Marrow Transplantation, 14(3), 282–289.PubMedCrossRefGoogle Scholar
  111. 111.
    Li, C., Zhang, W., Jiang, X., & Mao, N. (2007). Human-placenta-derived mesenchymal stem cells inhibit proliferation and function of allogeneic immune cells. Cell and Tissue Research, 330(3), 437–446.PubMedCrossRefGoogle Scholar
  112. 112.
    Cho, P. S., Messina, D. J., Hirsh, E. L., et al. (2008). Immunogenicity of umbilical cord tissue derived cells. Blood, 111(1), 430–438.PubMedCrossRefGoogle Scholar
  113. 113.
    Urashima, M., Hoshi, Y., Akiyama, M., et al. (1995). Ex vivo expansion of umbilical cord blood hematopoietic progenitor cells by combinations of cytokines. Acta Paediatrica Japonica, 37(2), 160–165.PubMedGoogle Scholar
  114. 114.
    Derzic, S., Slone, V., & Sender, L. (2005). IL-2-activated cord blood mononuclear cells. Cytotherapy, 7(5), 408–416.PubMedCrossRefGoogle Scholar
  115. 115.
    Kang, S. G., Jeun, S. S., Lim, J. Y., et al. (2008). Cytotoxicity of human umbilical cord blood-derived mesenchymal stem cells against human malignant glioma cells. Childs Nervous System, 24(3), 293–302.CrossRefGoogle Scholar
  116. 116.
    Jang, Y. K., Jung, D. H., Jung, M. H., et al. (2006). Mesenchymal stem cells feeder layer from human umbilical cord blood for ex vivo expanded growth and proliferation of hematopoietic progenitor cells. Annals of Hematology, 85(4), 212–225.PubMedCrossRefGoogle Scholar
  117. 117.
    Kögler, G., Sensken, S., Airey, J. A., et al. (2004). A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. Journal of Experimental Medicine, 200(2), 123–135.PubMedCrossRefGoogle Scholar
  118. 118.
    Markov, V., Kusumi, K., Tadesse, M. G., et al. (2007). Identification of cord blood-derived mesenchymal stem/stromal cell populations with distinct growth kinetics, differentiation potentials, and gene expression profiles. Stem Cells and Development, 16(1), 53–73.PubMedCrossRefGoogle Scholar
  119. 119.
    Rebelatto, C. K., Aguiar, A. M., Moretao, M. P., et al. (2008). Dissimilar differentiation of mesenchymal stem cells from bone marrow, umbilical cord blood, and adipose tissue. Experimental Biology and Medicine (Maywood, NJ), 233(7), 901–913.CrossRefGoogle Scholar
  120. 120.
    Guillot, P. V., De Bari, C., Dell’Accio, F., Kurata, H., Polak, J., & Fisk, N. M. (2008). Comparative osteogenic transcription profiling of various fetal and adult mesenchymal stem cell sources. Differentiation; Research in Biological Diversity, 76(9), 946–957.PubMedGoogle Scholar
  121. 121.
    Ballen, K. (2007). Targeting the stem cell niche: squeezing blood from bones. Bone Marrow Transplantation, 39(11), 655–660.PubMedCrossRefGoogle Scholar
  122. 122.
    Heng, B. C., Phan, T. T., Liu, H., Ouyang, H. W., & Cao, T. (2006). Can the therapeutic advantages of allogenic umbilical cord blood-derived stem cells and autologous bone marrow-derived mesenchymal stem cells be combined and synergized? ASAIO Journal, 52(6), 611–613.PubMedCrossRefGoogle Scholar
  123. 123.
    Huang, X. B., Liu, T., Meng, W. T., & Zhi, W. (2006). Osteoblasts differentiated from human marrow bone mesenchymal stem cells support hematopoietic stem/progenitor cells from umbilical cord blood. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 14(3), 552–556.PubMedGoogle Scholar
  124. 124.
    Reinisch, A., Bartmann, C., Rohde, E., et al. (2007). Humanized system to propagate cord blood-derived multipotent mesenchymal stromal cells for clinical application. Regenerative Medicine, 2(4), 371–382.PubMedCrossRefGoogle Scholar
  125. 125.
    Chan, S. L., Choi, M., Wnendt, S., et al. (2007). Enhanced in vivo homing of uncultured and selectively amplified cord blood CD34+ cells by cotransplantation with cord blood-derived unrestricted somatic stem cells. Stem Cells, 25(2), 529–536.PubMedCrossRefGoogle Scholar
  126. 126.
    Zhang, Y., Chai, C., Jiang, X. S., Teoh, S. H., & Leong, K. W. (2006). Co-culture of umbilical cord blood CD34+ cells with human mesenchymal stem cells. Tissue Engineering, 12(8), 2161–2170.PubMedCrossRefGoogle Scholar
  127. 127.
    Xie, C., Jia, B., Xiang, Y., et al. (2006). Support of hMSCs transduced with TPO/FL genes to expansion of umbilical cord CD34+ cells in indirect co-culture. Cell and Tissue Research, 326(1), 101–110.PubMedCrossRefGoogle Scholar
  128. 128.
    Xie, C. G., Wang, J. F., Xiang, Y., et al. (2006). Cocultivation of umbilical cord blood CD34+ cells with retro-transduced hMSCs leads to effective amplification of long-term culture-initiating cells. World Journal of Gastroenterology, 12(3), 393–402.PubMedGoogle Scholar
  129. 129.
    Patel, Z. S., Young, S., Tabata, Y., Jansen, J. A., Wong, M. E., & Mikos, A. G. (2008). Dual delivery of an angiogenic and an osteogenic growth factor for bone regeneration in a critical size defect model. Bone, 43(5), 931–940.PubMedCrossRefGoogle Scholar
  130. 130.
    Choi, Y. S., Im, M. W., Kim, C. S., et al. (2008). Chondrogenic differentiation of human umbilical cord blood-derived multilineage progenitor cells in atelocollagen. Cytotherapy, 10(2), 165–173.PubMedCrossRefGoogle Scholar
  131. 131.
    Jäger, M. (2008). Präklinische Untersuchungen von Möglichkeiten und Grenzen einer Stammzelltherapie zur Behandlung ossärer Defekte. Aachen: Shaker Verlag Medizin.Google Scholar

Copyright information

© Springer Science + Business Media 2009

Authors and Affiliations

  • Marcus Jäger
    • 1
  • Christoph Zilkens
    • 1
  • Bernd Bittersohl
    • 1
  • Rüdiger Krauspe
    • 1
  1. 1.Department of OrthopaedicsHeinrich-Heine University Medical SchoolDüsseldorfGermany

Personalised recommendations