Stem Cell Reviews and Reports

, Volume 5, Issue 3, pp 231–246 | Cite as

Role of Membrane Potential in the Regulation of Cell Proliferation and Differentiation

  • Sarah Sundelacruz
  • Michael Levin
  • David L. KaplanEmail author


Biophysical signaling, an integral regulator of long-term cell behavior in both excitable and non-excitable cell types, offers enormous potential for modulation of important cell functions. Of particular interest to current regenerative medicine efforts, we review several examples that support the functional role of transmembrane potential (Vmem) in the regulation of proliferation and differentiation. Interestingly, distinct Vmem controls are found in many cancer cell and precursor cell systems, which are known for their proliferative and differentiation capacities, respectively. Collectively, the data demonstrate that bioelectric properties can serve as markers for cell characterization and can control cell mitotic activity, cell cycle progression, and differentiation. The ability to control cell functions by modulating bioelectric properties such as Vmem would be an invaluable tool for directing stem cell behavior toward therapeutic goals. Biophysical properties of stem cells have only recently begun to be studied and are thus in need of further characterization. Understanding the molecular and mechanistic basis of biophysical regulation will point the way toward novel ways to rationally direct cell functions, allowing us to capitalize upon the potential of biophysical signaling for regenerative medicine and tissue engineering.


Biophysical signaling Electrophysiology Membrane potential Proliferation Differentiation Stem cells 



S.S. would like to thank the NSF for funding through the Graduate Research Fellowship Program. D.K. is supported by the NIH through the Tissue Engineering Resource Center (P41 EB002520). M.L. is supported by grants from the NHTSA (DTNH22-06-G-00001) and NIH (GM078484, HD055850-01).


  1. 1.
    Robinson, K. R., & Messerli, M. A. (1996). Electric embryos: the embryonic epithelium as a generator of developmental information. In C. D. McCaig (Ed.), Nerve growth and guidance (pp. 131–150). London: Portland.Google Scholar
  2. 2.
    Jaffe, L. F., & Nuccitelli, R. (1977). Electrical controls of development. Annual Review of Biophysics and Bioengineering, 6, 445–476.PubMedCrossRefGoogle Scholar
  3. 3.
    Lund, E. (1947). Bioelectric fields and growth. Austin: University of Texas Press.Google Scholar
  4. 4.
    Borgens, R. B. (1982). What is the role of naturally produced electric current in vertebrate regeneration and healing. International Review of Cytology, 76, 245–298.PubMedCrossRefGoogle Scholar
  5. 5.
    Borgens, R. B., Vanable, J. W., Jr., & Jaffe, L. F. (1977). Bioelectricity and regeneration. I. Initiation of frog limb regeneration by minute currents. Journal of Experimental Zoology, 200, 403–416.PubMedCrossRefGoogle Scholar
  6. 6.
    Mathews, A. P. (1903). Electrical polarity in the hydroids. American Journal of Physiology, 8, 294–299.Google Scholar
  7. 7.
    McCaig, C. D., Rajnicek, A. M., Song, B., & Zhao, M. (2005). Controlling cell behavior electrically: Current views and future potential. Physiological Reviews, 85, 943–978.PubMedCrossRefGoogle Scholar
  8. 8.
    Levin, M. (2007). Large-scale biophysics: Ion flows and regeneration. Trends in Cell Biology, 17, 262–271.CrossRefGoogle Scholar
  9. 9.
    Adams, D. S., Masi, A., & Levin, M. (2007). H+ pump-dependent changes in membrane voltage are an early mechanism necessary and sufficient to induce Xenopus tail regeneration. Development, 134, 1323–1335.PubMedCrossRefGoogle Scholar
  10. 10.
    Zhao, M., Song, B., Pu, J., et al. (2006). Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-gamma and PTEN. Nature, 442, 457–460.PubMedCrossRefGoogle Scholar
  11. 11.
    Arcangeli, A. (2005). Expression and role of hERG channels in cancer cells. Novartis Foundation Symposium, 266, 225–232. discussion 32–4.PubMedCrossRefGoogle Scholar
  12. 12.
    Mycielska, M. E., & Djamgoz, M. B. (2004). Cellular mechanisms of direct-current electric field effects: Galvanotaxis and metastatic disease. Journal of Cell Science, 117, 1631–1639.PubMedCrossRefGoogle Scholar
  13. 13.
    Wang, Z. (2004). Roles of K+ channels in regulating tumour cell proliferation and apoptosis. Pflugers Archiv, 448, 274–286.PubMedCrossRefGoogle Scholar
  14. 14.
    Bortner, C. D., & Cidlowski, J. A. (2004). The role of apoptotic volume decrease and ionic homeostasis in the activation and repression of apoptosis. Pflugers Archiv, 448, 313–318.PubMedCrossRefGoogle Scholar
  15. 15.
    Franco, R., Bortner, C. D., & Cidlowski, J. A. (2006). Potential roles of electrogenic ion transport and plasma membrane depolarization in apoptosis. Journal of Membrane Biology, 209, 43–58.PubMedCrossRefGoogle Scholar
  16. 16.
    Ling, G., & Gerard, R. W. (1949). The normal membrane potential of frog sartorius fibers. Journal of Cellular and Comparative Physiology, 34, 383–396.CrossRefGoogle Scholar
  17. 17.
    Stuart, G. J., & Palmer, L. M. (2006). Imaging membrane potential in dendrites and axons of single neurons. Pflugers Archiv, 453, 403–410.PubMedCrossRefGoogle Scholar
  18. 18.
    Molleman, A. (2003). Patch clamping: an introductory guide to patch clamp electrophysiology. Chichester, England: Wiley.Google Scholar
  19. 19.
    González, J. E., & Tsien, R. Y. (1997). Improved indicators of cell membrane potential that use fluorescence resonance energy transfer. Chemistry & Biology, 4, 269–277.CrossRefGoogle Scholar
  20. 20.
    Loew, L. M. (1992). Voltage-sensitive dyes: Measurement of membrane potentials induced by DC and AC electric fields. Bioelectromagnetics, (Suppl 1):179–89.Google Scholar
  21. 21.
    Brüggemann, A., Stoelzle, S., George, M., Behrends, J. C., & Fertig, N. (2006). Microchip technology for automated and parallel patch-clamp recording. Small, 2, 840–846.PubMedCrossRefGoogle Scholar
  22. 22.
    Millard, A. C., Jin, L., Wei, M. D., Wuskell, J. P., Lewis, A., & Loew, L. M. (2004). Sensitivity of second harmonic generation from styryl dyes to transmembrane potential. Biophysical Journal, 86, 1169–1176.PubMedCrossRefGoogle Scholar
  23. 23.
    Plášek, J., & Sigler, K. (1996). Slow fluorescent indicators of membrane potential: A survey of different approaches to probe response analysis. Journal of Photochemistry and Photobiology. B, Biology, 33, 101–124.PubMedCrossRefGoogle Scholar
  24. 24.
    Binggeli, R., & Weinstein, R. C. (1986). Membrane potentials and sodium channels: Hypotheses for growth regulation and cancer formation based on changes in sodium channels and gap junctions. Journal of Theoretical Biology, 123, 377–401.PubMedCrossRefGoogle Scholar
  25. 25.
    Cone, C. D., Jr. (1971). Unified theory on the basic mechanism of normal mitotic control and oncogenesis. Journal of Theoretical Biology, 30, 151–181.PubMedCrossRefGoogle Scholar
  26. 26.
    Cone, C. D., Jr., & Tongier, M., Jr. (1973). Contact inhibition of division: Involvement of the electrical transmembrane potential. Journal of Cellular Physiology, 82, 373–386.PubMedCrossRefGoogle Scholar
  27. 27.
    Adams, D. S., & Levin, M. (2006). Strategies and techniques for investigation of biophysical signals in patterning. In M. Whitman & A. K. Sater (Eds.), Analysis of growth factor signaling in embryos: Taylor and Francis books (pp. 177–262).Google Scholar
  28. 28.
    MacFarlane, S. N., & Sontheimer, H. (2000). Changes in ion channel expression accompany cell cycle progression of spinal cord astrocytes. GLIA, 30, 39–48.PubMedCrossRefGoogle Scholar
  29. 29.
    Dubois, J. M., & Rouzaire-Dubois, B. (1993). Role of potassium channels in mitogenesis. Progress in Biophysics and Molecular Biology, 59, 1–21.PubMedCrossRefGoogle Scholar
  30. 30.
    Wonderlin, W. F., & Strobl, J. S. (1996). Potassium channels, proliferation and G1 progression. Journal of Membrane Biology, 154, 91–107.PubMedCrossRefGoogle Scholar
  31. 31.
    Cone, C. D., & Cone, C. M. (1976). Induction of mitosis in mature neurons in central nervous system by sustained depolarization. Science, 192, 155–158.PubMedCrossRefGoogle Scholar
  32. 32.
    Stillwell, E. F., Cone, C. M., & Cone, C. D. (1973). Stimulation of DNA synthesis in CNS neurones by sustained depolarisation. Nature: New Biology, 246, 110–111.CrossRefGoogle Scholar
  33. 33.
    Cone, C. D., & Tongier, M. (1971). Control of somatic cell mitosis by simulated changes in the transmembrane potential level. Oncology, 25, 168–182.PubMedCrossRefGoogle Scholar
  34. 34.
    Bordey, A., Lyons, S. A., Hablitz, J. J., & Sontheimer, H. (2001). Electrophysiological characteristics of reactive astrocytes in experimental cortical dysplasia. Journal of Neurophysiology, 85, 1719–1731.PubMedGoogle Scholar
  35. 35.
    MacFarlane, S. N., & Sontheimer, H. (1997). Electrophysiological changes that accompany reactive gliosis in vitro. Journal of Neuroscience, 17, 7316–7329.PubMedGoogle Scholar
  36. 36.
    Bordey, A., & Sontheimer, H. (1997). Postnatal development of ionic currents in rat hippocampal astrocytes in situ. Journal of Neurophysiology, 78, 461–477.PubMedGoogle Scholar
  37. 37.
    Ransom, C. B., & Sontheimer, H. (1995). Biophysical and pharmacological characterization of inwardly rectifying K+ currents in rat spinal cord astrocytes. Journal of Neurophysiology, 73, 333–346.PubMedGoogle Scholar
  38. 38.
    Owens, G. K., Kumar, M. S., & Wamhoff, B. R. (2004). Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiological Reviews, 84, 767–801.PubMedCrossRefGoogle Scholar
  39. 39.
    Beech, D. J. (2007). Ion channel switching and activation in smooth-muscle cells of occlusive vascular diseases. Biochemical Society Transactions, 35, 890–894.PubMedCrossRefGoogle Scholar
  40. 40.
    Gollasch, M., Haase, H., Ried, C., et al. (1998). L-type calcium channel expression depends on the differentiated state of vascular smooth muscle cells. FASEB Journal, 12, 593–601.PubMedGoogle Scholar
  41. 41.
    Richard, S., Neveu, D., Carnac, G., Bodin, P., Travo, P., & Nargeot, J. (1992). Differential expression of voltage-gated Ca2+-currents in cultivated aortic myocytes. Biochimica et Biophysica Acta—Protein Structure and Molecular Enzymology, 1160, 95–104.CrossRefGoogle Scholar
  42. 42.
    Neylon, C. B., Lang, R. J., Fu, Y., Bobik, A., & Reinhart, P. H. (1999). Molecular cloning and characterization of the intermediate-conductance Ca(2+)-activated K(+) channel in vascular smooth muscle: relationship between K(Ca) channel diversity and smooth muscle cell function. Circulation Research, 85, e33–e43.PubMedGoogle Scholar
  43. 43.
    Freedman, B. D., Price, M. A., & Deutsch, C. J. (1992). Evidence for voltage modulation of IL-2 production in mitogen-stimulated human peripheral blood lymphocytes. Journal of Immunology, 149, 3784–3794.Google Scholar
  44. 44.
    Lin, C. S., Boltz, R. C., Blake, J. T., et al. (1993). Voltage-gated potassium channels regulate calcium-dependent pathways involved in human T lymphocyte activation. The Journal of Experimental Medicine, 177, 637–645.PubMedCrossRefGoogle Scholar
  45. 45.
    Price, M., Lee, S. C., & Deutsch, C. (1989). Charybdotoxin inhibits proliferation and interleukin 2 production in human peripheral blood lymphocytes. Proceedings of the National Academy of Sciences of the United States of America, 86, 10171–10175.PubMedCrossRefGoogle Scholar
  46. 46.
    Amigorena, S., Choquet, D., Teillaud, J. L., Korn, H., & Fridman, W. H. (1990). Ion channel blockers inhibit B cell activation at a precise stage of the G1 phase of the cell cycle. Possible involvement of K+ channels. Journal of Immunology, 144, 2038–2045.Google Scholar
  47. 47.
    Lee, S. C., Sabath, D. E., Deutsch, C., & Prystowsky, M. B. (1986). Increased voltage-gated potassium conductance during interleukin 2-stimulated proliferation of a mouse helper T lymphocyte clone. Journal of Cell Biology, 102, 1200–1208.PubMedCrossRefGoogle Scholar
  48. 48.
    Cahalan, M. D., & Chandy, K. G. (1997). Ion channels in the immune system as targets for immunosuppression. Current Opinion in Biotechnology, 8, 749–756.PubMedCrossRefGoogle Scholar
  49. 49.
    Deutsch, C., Krause, D., & Lee, S. C. (1986). Voltage-gated potassium conductance in human T-lymphocytes stimulated with phorbol ester. Journal of Physiology, 372, 405–423.PubMedGoogle Scholar
  50. 50.
    Ghanshani, S., Wulff, H., Miller, M. J., et al. (2000). Up-regulation of the IKCa1 potassium channel during T-cell activation: Molecular mechanism and functional consequences. Journal of Biological Chemistry, 275, 37137–37149.PubMedCrossRefGoogle Scholar
  51. 51.
    Grissmer, S., Nguyen, A. N., & Cahalan, M. D. (1993). Calcium-activated potassium channels in resting and activated human T lymphocytes: Expression levels, calcium dependence, ion selectivity, and pharmacology. Journal of General Physiology, 102, 601–630.PubMedCrossRefGoogle Scholar
  52. 52.
    Khanna, R., Change, M. C., Joiner, W. J., Kaczmarek, L. K., & Schlichter, L. C. (1999). hSK4/hIK1, a calmodulin-binding K(Ca) channel in human T lymphocytes. Roles in proliferation and volume regulation. Journal of Biological Chemistry, 274, 14838–14849.PubMedCrossRefGoogle Scholar
  53. 53.
    Kim, C. F., & Dirks, P. B. (2008). Cancer and stem cell biology: How tightly intertwined? Cell Stem Cell, 3, 147–150.PubMedCrossRefGoogle Scholar
  54. 54.
    Normile, D. (2002). Cell proliferation. Common control for cancer, stem cells. Science, 298, 1869.PubMedCrossRefGoogle Scholar
  55. 55.
    Wonderlin, W. F., Woodfork, K. A., & Strobl, J. S. (1995). Changes in membrane potential during the progression of MCF-7 human mammary tumor cell through the cell cycle. Journal of Cellular Physiology, 165, 177–185.PubMedCrossRefGoogle Scholar
  56. 56.
    Woodfork, K. A., Wonderlin, W. F., Peterson, V. A., & Strobl, J. S. (1995). Inhibition of ATP-sensitive potassium channels causes reversible cell-cycle arrest of human breast cancer cells in tissue culture. Journal of Cellular Physiology, 162, 163–171.PubMedCrossRefGoogle Scholar
  57. 57.
    Klimatcheva, E., & Wonderlin, W. F. (1999). An ATP-sensitive K+ current that regulates progression through early G1 phase of the cell cycle in MCF-7 human breast cancer cells. Journal of Membrane Biology, 171, 35–46.PubMedCrossRefGoogle Scholar
  58. 58.
    Ouadid-Ahidouch, H., Chaussade, F., Roudbaraki, M., et al. (2000). Kv1.1 K+ channels identification in human breast carcinoma cells: Involvement in cell proliferation. Biochemical and Biophysical Research Communications, 278, 272–277.PubMedCrossRefGoogle Scholar
  59. 59.
    Ouadid-Ahidouch, H., Le Bourhis, X., Roudbaraki, M., Toillon, R. A., Delcourt, P., & Prevarskaya, N. (2001). Changes in the K+ current-density of MCF-7 cells during progression through the cell cycle: Possible Involvement of a h-ether.a-gogo K+ channel. Receptors and Channels, 7, 345–356.PubMedGoogle Scholar
  60. 60.
    Ouadid-Ahidouch, H., Roudbaraki, M., Ahidouch, A., Delcourt, P., & Prevarskaya, N. (2004). Cell-cycle-dependent expression of the large Ca2+-activated K+ channels in breast cancer cells. Biochemical and Biophysical Research Communications, 316, 244–251.PubMedCrossRefGoogle Scholar
  61. 61.
    Ouadid-Ahidouch, H., Roudbaraki, M., Delcourt, P., Ahidouch, A., Joury, N., & Prevarskaya, N. (2004). Functional and molecular identification of intermediate-conductance Ca 2+-activated K+ channels in breast cancer cells: Association with cell cycle progression. American Journal of Physiology. Cell Physiology, 287, C125–C134.PubMedCrossRefGoogle Scholar
  62. 62.
    Ouadid-Ahidouch, H., & Ahidouch, A. (2008). K+ channel expression in human breast cancer cells: Involvement in cell cycle regulation and carcinogenesis. Journal of Membrane Biology, 221, 1–6.PubMedCrossRefGoogle Scholar
  63. 63.
    MacFarlane, S. N., & Sontheimer, H. (2000). Modulation of Kv1.5 currents by Src tyrosine phosphorylation: Potential role in the differentiation of astrocytes. Journal of Neuroscience, 20, 5245–5253.PubMedGoogle Scholar
  64. 64.
    Sontheimer, H. (1994). Voltage-dependent ion channels in glial cells. GLIA, 11, 156–172.PubMedCrossRefGoogle Scholar
  65. 65.
    Li, L., Head, V., & Timpe, L. C. (2001). Identification of an inward rectifier potassium channel gene expressed in mouse cortical astrocytes. GLIA, 33, 57–71.PubMedCrossRefGoogle Scholar
  66. 66.
    Higashimori, H., & Sontheimer, H. (2007). Role of Kir4.1 channels in growth control of glia. GLIA, 55, 1668–1679.PubMedCrossRefGoogle Scholar
  67. 67.
    Yasuda, T., Bartlett, P. F., & Adams, D. J. (2008). Kir and Kv channels regulate electrical properties and proliferation of adult neural precursor cells. Molecular and Cellular Neurosciences, 37, 284–297.PubMedCrossRefGoogle Scholar
  68. 68.
    Wang, K., Xue, T., Tsang, S. Y., et al. (2005). Electrophysiological properties of pluripotent human and mouse embryonic stem cells. Stem Cells, 23, 1526–1534.PubMedCrossRefGoogle Scholar
  69. 69.
    Morokuma, J., Blackiston, D., Adams, D. S., Seebohm, G., Trimmer, B., & Levin, M. (2008). Modulation of potassium channel function confers a hyperproliferative invasive phenotype on embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 105, 16608–16613.PubMedCrossRefGoogle Scholar
  70. 70.
    Ferletta, M., Uhrbom, L., Olofsson, T., Ponten, F., & Westermark, B. (2007). Sox10 has a broad expression pattern in gliomas and enhances platelet-derived growth factor-B-induced gliomagenesis. Molecular Cancer Research, 5, 891–897.PubMedCrossRefGoogle Scholar
  71. 71.
    Bannykh, S. I., Stolt, C. C., Kim, J., Perry, A., & Wegner, M. (2006). Oligodendroglial-specific transcriptional factor SOX10 is ubiquitously expressed in human gliomas. Journal of Neuro-oncology, 76, 115–127.PubMedCrossRefGoogle Scholar
  72. 72.
    Martin, T. A., Goyal, A., Watkins, G., & Jiang, W. G. (2005). Expression of the transcription factors snail, slug, and twist and their clinical significance in human breast cancer. Annals of Surgical Oncology, 12, 488–496.PubMedCrossRefGoogle Scholar
  73. 73.
    Kurrey, N. K., Amit, K., & Bapat, S. A. (2005). Snail and Slug are major determinants of ovarian cancer invasiveness at the transcription level. Gynecologic Oncology, 97, 155–165.PubMedCrossRefGoogle Scholar
  74. 74.
    Adams, D. S., Masi, A., & Levin, M. (2007). H+ pump-dependent changes in membrane voltage are an early mechanism necessary and sufficient to induce Xenopus tail regeneration. Development, 134, 1323–1335.PubMedCrossRefGoogle Scholar
  75. 75.
    Miller, J. P., Yeh, N., Vidal, A., & Koff, A. (2007). Interweaving the cell cycle machinery with cell differentiation. Cell Cycle, 6, 2932–2938.PubMedGoogle Scholar
  76. 76.
    Arcangeli, A., Bianchi, L., Becchetti, A., et al. (1995). A novel inward-rectifying K+ current with a cell-cycle dependence governs the resting potential of mammalian neuroblastoma cells. Journal of Physiology, 489, 455–471.PubMedGoogle Scholar
  77. 77.
    Arcangeli, A., Rosati, B., Cherubini, A., et al. (1998). Long term exposure to retinoic acid induces the expression of IRK1 channels in HERG channel-endowed neuroblastoma cells. Biochemical and Biophysical Research Communications, 244, 706–711.PubMedCrossRefGoogle Scholar
  78. 78.
    Arcangeli, A., Rosati, B., Cherubini, A., et al. (1997). HERG- and IRK-like inward rectifier currents are sequentially expressed during neuronal development of neural crest cells and their derivatives. European Journal of Neuroscience, 9, 2596–2604.PubMedCrossRefGoogle Scholar
  79. 79.
    Arcangeli, A., Rosati, B., Crociani, O., et al. (1999). Modulation of HERG current and herg gene expression during retinoic acid treatment of human neuroblastoma cells: Potentiating effects of BDNF. Journal of Neurobiology, 40, 214–225.PubMedCrossRefGoogle Scholar
  80. 80.
    Biagiotti, T., D’Amico, M., Marzi, I., et al. (2006). Cell renewing in neuroblastoma: Electrophysiological and immunocytochemical characterization of stem cells and derivatives. Stem Cells, 24, 443–453.PubMedCrossRefGoogle Scholar
  81. 81.
    Sun, W., Buzanska, L., Domanska-Janik, K., Salvi, R. J., & Stachowiak, M. K. (2005). Voltage-sensitive and ligand-gated channels in differentiating neural stem-like cells derived from the nonhematopoietic fraction of human umbilical cord blood. Stem Cells, 23, 931–945.PubMedCrossRefGoogle Scholar
  82. 82.
    Cho, T., Bae, J. H., Choi, H. B., et al. (2002). Human neural stem cells: Electrophysiological properties of voltage-gated ion channels. NeuroReport, 13, 1447–1452.PubMedCrossRefGoogle Scholar
  83. 83.
    Chafai, M., Louiset, E., Basille, M., et al. (2006). PACAP and VIP promote initiation of electrophysiological activity in differentiating embryonic stem cells. Annals of the New York Academy of Sciences, 1070, 185–189.PubMedCrossRefGoogle Scholar
  84. 84.
    Van Kempen, M. J. A., Van Ginneken, A., De Grijs, I., et al. (2003). Expression of the electrophysiological system during murine embryonic stem cell cardiac differentiation. Cellular Physiology and Biochemistry, 13, 263–270.PubMedCrossRefGoogle Scholar
  85. 85.
    Van Der Heyden, M. A. G., Van Kempen, M. J. A., Tsuji, Y., Rook, M. B., Jongsma, H. J., & Opthof, T. (2003). P19 embryonal carcinoma cells: A suitable model system for cardiac electrophysiological differentiation at the molecular and functional level. Cardiovascular Research, 58, 410–422.PubMedCrossRefGoogle Scholar
  86. 86.
    Fioretti, B., Pietrangelo, T., Catacuzzeno, L., & Franciolini, F. (2005). Intermediate-conductance Ca2+-activated K+ channel is expressed in C2C12 myoblasts and is downregulated during myogenesis. American Journal of Physiology. Cell Physiology, 289, C89–C96.PubMedCrossRefGoogle Scholar
  87. 87.
    Kubo, Y. (1991). Comparison of initial stages of muscle differentiation in rat and mouse myoblastic and mouse mesodermal stem cell lines. Journal of Physiology, 442, 743–759.PubMedGoogle Scholar
  88. 88.
    Voets, T., Wei, L., De Smet, P., et al. (1997). Downregulation of volume-activated Cl- currents during muscle differentiation. American Journal of Physiology. Cell Physiology, 272, C667–C674.Google Scholar
  89. 89.
    Lesage, F., Attali, B., Lazdunski, M., & Barhanin, J. (1992). Developmental expression of voltage-sensitive K+ channels in mouse skeletal muscle and C2C12 cells. FEBS Letters, 310, 162–166.PubMedCrossRefGoogle Scholar
  90. 90.
    Wieland, S. J., & Gong, Q. H. (1995). Modulation of a potassium conductance in developing skeletal muscle. American Journal of Physiology. Cell Physiology, 268, C490–C495.Google Scholar
  91. 91.
    Hamann, M., Widmer, H., Baroffio, A., et al. (1994). Sodium and potassium currents in freshly isolated and in proliferating human muscle satellite cells. Journal of Physiology, 475, 305–317.PubMedGoogle Scholar
  92. 92.
    Bernheim, L., Liu, J. H., Hamann, M., Haenggeli, C. A., Fischer-Lougheed, J., & Bader, C. R. (1996). Contribution of a non-inactivating potassium current to the resting membrane potential of fusion-competent human myoblasts. Journal of Physiology, 493, 129–141.PubMedGoogle Scholar
  93. 93.
    Bijlenga, P., Liu, J. H., Espinos, E., et al. (2000). T-type α1H Ca2+ channels are involved in Ca2+ signaling during terminal differentiation (fusion) of human myoblasts. Proceedings of the National Academy of Sciences of the United States of America, 97, 7627–7632.PubMedCrossRefGoogle Scholar
  94. 94.
    Bijlenga, P., Occhiodoro, T., Liu, J. H., Bader, C. R., Bernheim, L., & Fischer-Lougheed, J. (1998). An ether-a-go-go K+ current, I(h-eag), contributes to the hyperpolarization of human fusion-competent myoblasts. Journal of Physiology, 512, 317–323.PubMedCrossRefGoogle Scholar
  95. 95.
    Fischer-Lougheed, J., Liu, J. H., Espinos, E., et al. (2001). Human myoblast fusion requires expression of functional inward rectifier Kir2.1 channels. Journal of Cell Biology, 153, 677–685.PubMedCrossRefGoogle Scholar
  96. 96.
    Liu, J. H., Bijlenga, P., Fischer-Lougheed, J., et al. (1998). Role of an inward rectifier K+ current and of hyperpolarization in human myoblast fusion. Journal of Physiology, 510, 467–476.PubMedCrossRefGoogle Scholar
  97. 97.
    Messenger, E. A., & Warner, A. E. (1979). The function of the sodium pump during differentiation of amphibian embryonic neurones. Journal of Physiology, 292, 85–105.PubMedGoogle Scholar
  98. 98.
    Messenger, E. A., & Warner, A. E. (1976). The effect of inhibiting the sodium pump on the differentiation of nerve cells [proceedings]. Journal of Physiology, 263, 211P–212P.PubMedGoogle Scholar
  99. 99.
    Konig, S., Hinard, V., Arnaudeau, S., et al. (2004). Membrane hyperpolarization triggers myogenin and myocyte enhancer factor-2 expression during human myoblast differentiation. Journal of Biological Chemistry, 279, 28187–28196.PubMedCrossRefGoogle Scholar
  100. 100.
    Hinard, V., Belin, D., Konig, S., Bader, C. R., & Bernheim, L. (2008). Initiation of human myoblast differentiation via dephosphorylation of Kir2.1 K+ channels at tyrosine 242. Development, 135, 859–867.PubMedCrossRefGoogle Scholar
  101. 101.
    Konig, S., Béguet, A., Bader, C. R., & Bernheim, L. (2006). The calcineurin pathway links hyperpolarization (Kir2.1)-induced Ca2+ signals to human myoblast differentiation and fusion. Development, 133, 3107–3114.PubMedCrossRefGoogle Scholar
  102. 102.
    Yin, Z., Tong, Y., Zhu, H., & Watsky, M. A. (2008). ClC-3 is required for LPA-activated Cl- current activity and fibroblast-to-myofibroblast differentiation. American Journal of Physiology. Cell Physiology, 294, C535–C542.PubMedCrossRefGoogle Scholar
  103. 103.
    Shirihai, O., Attali, B., Dagan, D., & Merchav, S. (1998). Expression of two inward rectifier potassium channels is essential for differentiation of primitive human hematopoietic progenitor cells. Journal of Cellular Physiology, 177, 197–205.PubMedCrossRefGoogle Scholar
  104. 104.
    Shirihai, O., Merchav, S., Attali, B., & Dagan, D. (1996). K+ channel antisense oligodeoxynucleotides inhibit cytokine-induced expansion of human hemopoietic progenitors. Pflugers Archiv, 431, 632–638.PubMedCrossRefGoogle Scholar
  105. 105.
    Nakanishi, S., & Okazawa, M. (2006). Membrane potential-regulated Ca2+ signalling in development and maturation of mammalian cerebellar granule cells. Journal of Physiology, 575, 389–395.PubMedCrossRefGoogle Scholar
  106. 106.
    Rossi, P., D’Angelo, E., Magistretti, J., Toselli, M., & Taglietti, V. (1994). Age dependent expression of high-voltage activated calcium currents during cerebellar granule cell development in situ. Pflugers Archiv, 429, 107–116.PubMedCrossRefGoogle Scholar
  107. 107.
    Sato, M., Suzuki, K., Yamazaki, H., & Nakanishi, S. (2005). A pivotal role of calcineurin signaling in development and maturation of postnatal cerebellar granule cells. Proceedings of the National Academy of Sciences of the United States of America, 102, 5874–5879.PubMedCrossRefGoogle Scholar
  108. 108.
    Sundelacruz, S., Levin, M., & Kaplan, D. L. (2008). Membrane potential controls adipogenic and osteogenic differentiation of mesenchymal stem cells. PLoS ONE, 3, e3737.PubMedCrossRefGoogle Scholar
  109. 109.
    Echeverri, K., & Tanaka, E. M. (2002). Mechanisms of muscle dedifferentiation during regeneration. Seminars in Cell & Developmental Biology, 13, 353–360.CrossRefGoogle Scholar
  110. 110.
    Odelberg, S. J. (2002). Inducing cellular dedifferentiation: A potential method for enhancing endogenous regeneration in mammals. Seminars in Cell & Developmental Biology, 13, 335–343.CrossRefGoogle Scholar
  111. 111.
    Chiabrera, A., Hinsenkamp, M., Pilla, A. A., et al. (1979). Cytofluorometry of electromagnetically controlled cell dedifferentiation. Journal of Histochemistry and Cytochemistry, 27, 375–381.PubMedGoogle Scholar
  112. 112.
    Chiabrera, A., Viviani, R., Parodi, G., et al. (1980). Automated absorption image cytometry of electromagnetically exposed frog erythrocytes. Cytometry, 1, 42–48.PubMedCrossRefGoogle Scholar
  113. 113.
    Harrington, D. B. (1972). Electrical stimulation of RNA and protein-synthesis in frog erythrocyte. Anatomical Record, 172, 325.Google Scholar
  114. 114.
    Harrington, D. B., & Becker, R. O. (1973). Electrical stimulation of RNA and protein synthesis in the frog erythrocyte. Experimental Cell Research, 76, 95–98.PubMedCrossRefGoogle Scholar
  115. 115.
    Hinsenkamp, M., Chiabrera, A., Ryaby, J., Pilla, A. A., & Bassett, C. A. (1978). Cell behaviour and DNA modification in pulsing electromagnetic fields. Acta Orthopaedica Belgica, 44, 636–650.PubMedGoogle Scholar
  116. 116.
    Balana, B., Nicoletti, C., Zahanich, I., et al. (2006). 5-Azacytidine induces changes in electrophysiological properties of human mesenchymal stem cells. Cell Research, 16, 949–960.PubMedCrossRefGoogle Scholar
  117. 117.
    Ravens, U. (2006). Electrophysiological properties of stem cells. Herz, 31, 123–126.PubMedCrossRefGoogle Scholar
  118. 118.
    Wenisch, S., Trinkaus, K., Hild, A., et al. (2006). Immunochemical, ultrastructural and electrophysiological investigations of bone-derived stem cells in the course of neuronal differentiation. Bone, 38, 911–921.PubMedCrossRefGoogle Scholar
  119. 119.
    Biagiotti, T., D’Amico, M., Marzi, I., et al. (2006). Cell renewing in neuroblastoma: electrophysiological and immunocytochemical characterization of stem cells and derivatives. Stem Cells, 24, 443–453.PubMedCrossRefGoogle Scholar
  120. 120.
    Wang, K., Xue, T., Tsang, S. Y., et al. (2005). Electrophysiological properties of pluripotent human and mouse embryonic stem cells. Stem Cells, 23, 1526–1534.PubMedCrossRefGoogle Scholar
  121. 121.
    Flanagan, L. A., Lu, J., Wang, L., et al. (2007). Unique dielectric properties distinguish stem cells and their differentiated progeny. Stem Cells.Google Scholar
  122. 122.
    Gersdorff Korsgaard, M. P., Christophersen, P., Ahring, P. K., & Olesen, S. P. (2001). Identification of a novel voltage-gated Na+ channel rNa(v)1.5a in the rat hippocampal progenitor stem cell line HiB5. Pflugers Archiv, 443, 18–30.PubMedCrossRefGoogle Scholar
  123. 123.
    Heubach, J. F., Graf, E. M., Leutheuser, J., et al. (2004). Electrophysiological properties of human mesenchymal stem cells. Journal of Physiology, 554, 659–672.PubMedCrossRefGoogle Scholar
  124. 124.
    Li, G. R., Sun, H., Deng, X., & Lau, C. P. (2005). Characterization of ionic currents in human mesenchymal stem cells from bone marrow. Stem Cells, 23, 371–382.PubMedCrossRefGoogle Scholar
  125. 125.
    Bai, X., Ma, J., Pan, Z., et al. (2007). Electrophysiological properties of human adipose tissue-derived stem cells. American Journal of Physiology. Cell Physiology, 293(5), C1539–C1550.PubMedCrossRefGoogle Scholar
  126. 126.
    Cai, J., Cheng, A., Luo, Y., et al. (2004). Membrane properties of rat embryonic multipotent neural stem cells. Journal of Neurochemistry, 88, 212–226.PubMedCrossRefGoogle Scholar
  127. 127.
    Park, K. S., Jung, K. H., Kim, S. H., et al. (2007). Functional expression of ion channels in mesenchymal stem cells derived from umbilical cord vein. Stem Cells, 25, 2044–2052.PubMedCrossRefGoogle Scholar
  128. 128.
    Yu, K., Ruan, D. Y., & Ge, S. Y. (2002). Three electrophysiological phenotypes of cultured human umbilical vein endothelial cells. General Physiology and Biophysics, 21, 315–326.PubMedGoogle Scholar
  129. 129.
    Baksh, D., Song, L., & Tuan, R. S. (2004). Adult mesenchymal stem cells: Characterization, differentiation, and application in cell and gene therapy. Journal of Cellular and Molecular Medicine, 8, 301–316.PubMedCrossRefGoogle Scholar
  130. 130.
    Levin, M. (2007). Large-scale biophysics: Ion flows and regeneration. Trends in Cell Biology, 17, 261–270.PubMedCrossRefGoogle Scholar
  131. 131.
    Constantinescu, S. N. (2000). Stem cell generation and choice of fate: Role of cytokines and cellular microenvironment. Journal of Cellular and Molecular Medicine, 4, 233–248.PubMedCrossRefGoogle Scholar
  132. 132.
    Bianchi, G., Muraglia, A., Daga, A., Corte, G., Cancedda, R., & Quarto, R. (2001). Microenvironment and stem properties of bone marrow-derived mesenchymal cells. Wound Repair Regen, 9, 460–466.PubMedCrossRefGoogle Scholar
  133. 133.
    Kasemeier-Kulesa, J. C., Teddy, J. M., Postovit, L. M., et al. (2008). Reprogramming multipotent tumor cells with the embryonic neural crest microenvironment. Developmental Dynamics, 237, 2657–2666.PubMedCrossRefGoogle Scholar
  134. 134.
    Heese, O., Disko, A., Zirkel, D., Westphal, M., & Lamszus, K. (2005). Neural stem cell migration toward gliomas in vitro. Neuro-oncology, 7, 476–484.PubMedCrossRefGoogle Scholar
  135. 135.
    Jeon, J. Y., An, J. H., Kim, S. U., Park, H. G., & Lee, M. A. (2008). Migration of human neural stem cells toward an intracranial glioma. Experimental & Molecular Medicine, 40, 84–91.CrossRefGoogle Scholar
  136. 136.
    Quesenberry, P. J., & Becker, P. S. (1998). Stem cell homing: Rolling, crawling, and nesting. Proceedings of the National Academy of Sciences of the United States of America, 95, 15155–15157.PubMedCrossRefGoogle Scholar
  137. 137.
    Whetton, A. D., & Graham, G. J. (1999). Homing and mobilization in the stem cell niche. Trends in Cell Biology, 9, 233–238.PubMedCrossRefGoogle Scholar
  138. 138.
    Krause, D. S., Theise, N. D., Collector, M. I., et al. (2001). Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell, 105, 369–377.PubMedCrossRefGoogle Scholar
  139. 139.
    Penn, M. S., Zhang, M., Deglurkar, I., & Topol, E. J. (2004). Role of stem cell homing in myocardial regeneration. International Journal of Cardiology, 95(Suppl 1), S23–S25.PubMedCrossRefGoogle Scholar
  140. 140.
    Chute, J. P. (2006). Stem cell homing. Current Opinion in Hematology, 13, 399–406.PubMedCrossRefGoogle Scholar
  141. 141.
    Sanchez Alvarado, A. (2004). Planarians. Current Biology, 14, R737–R738.PubMedCrossRefGoogle Scholar
  142. 142.
    Reddien, P. W., & Sanchez Alvarado, A. (2004). Fundamentals of planarian regeneration. Annual Review of Cell and Developmental Biology, 20, 725–757.PubMedCrossRefGoogle Scholar
  143. 143.
    Oviedo, N., & Levin, M. (2008). The planarian regeneration model as a context for the study of drug effects and mechanisms. In R. B. Raffa & S. M. Rawls (Eds.), Planaria: A model for drug action and abuse. Austin: RG Landes Co.Google Scholar
  144. 144.
    Sanchez Alvarado, A. (2003). The freshwater planarian Schmidtea mediterranea: Embryogenesis, stem cells and regeneration. Current Opinion in Genetics and Development, 13, 438–444.PubMedCrossRefGoogle Scholar
  145. 145.
    Salo, E., & Baguna, J. (1985). Cell movement in intact and regenerating planarians. Quantitation using chromosomal, nuclear and cytoplasmic markers. Journal of Embryology and Experimental Morphology, 89, 57–70.PubMedGoogle Scholar
  146. 146.
    Oviedo, N. J., Pearson, B. J., Levin, M., & Sanchez Alvarado, A. (2008). Planarian PTEN homologs regulate stem cells and regeneration through TOR signaling. Disease Models & Mechanisms, 1, 131–143.CrossRefGoogle Scholar
  147. 147.
    Nogi, T., & Levin, M. (2005). Characterization of innexin gene expression and functional roles of gap-junctional communication in planarian regeneration. Developmental Biology, 287, 314–335.PubMedCrossRefGoogle Scholar
  148. 148.
    Oviedo, N. J., & Levin, M. (2007). smedinx-11 is a planarian stem cell gap junction gene required for regeneration and homeostasis. Development, 134, 3121–3131.PubMedCrossRefGoogle Scholar
  149. 149.
    Wong, R. C., Pera, M. F., & Pebay, A. (2008). Role of gap junctions in embryonic and somatic stem cells. Stem Cell Reviews, 4, 283–292.PubMedCrossRefGoogle Scholar
  150. 150.
    Spray, D., Harris, A., & Bennett, M. (1981). Equilibrium properties of a voltage-dependent junctional conductance. Journal of General Physiology, 77, 77–93.PubMedCrossRefGoogle Scholar
  151. 151.
    Harris, A., Spray, D., & Bennett, M. (1983). Control of intercellular communication by voltage dependence of gap junctional conductance. Journal of Neuroscience, 3, 79–100.PubMedGoogle Scholar
  152. 152.
    Menichella, D. M., Majdan, M., Awatramani, R., et al. (2006). Genetic and physiological evidence that oligodendrocyte gap junctions contribute to spatial buffering of potassium released during neuronal activity. Journal of Neuroscience, 26, 10984–10991.PubMedCrossRefGoogle Scholar
  153. 153.
    Verselis, V., Trexler, E., Bargiello, T., & Bennett, M. (1997). Studies of voltage gating of gap junctions and hemichannels formed by connexin proteins. In R. Latorre, J. Saez (Eds.), From ion channels to cell-to-cell conversations (pp. 323–347). New York.Google Scholar
  154. 154.
    Morokuma, J., Blackiston, D., Adams, D. S., Seebohm, G., Trimmer, B., & Levin, M. (2008). Modulation of potassium channel function confers a hyperproliferative invasive phenotype on embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 105, 16608–16613.PubMedCrossRefGoogle Scholar
  155. 155.
    Djamgoz, M. B. A., Mycielska, M., Madeja, Z., Fraser, S. P., & Korohoda, W. (2001). Directional movement of rat prostate cancer cells in direct-current electric field: Involvement of voltage-gated Na+ channel activity. Journal of Cell Science, 114, 2697–2705.PubMedGoogle Scholar
  156. 156.
    Brackenbury, W. J., & Djamgoz, M. B. (2006). Activity-dependent regulation of voltage-gated Na+ channel expression in Mat-LyLu rat prostate cancer cell line. Journal of Physiology, 573, 343–356.PubMedCrossRefGoogle Scholar
  157. 157.
    Gruler, H., & Nuccitelli, R. (1991). Neural crest cell galvanotaxis: new data and a novel approach to the analysis of both galvanotaxis and chemotaxis. Cell Motility and the Cytoskeleton, 19, 121–133.PubMedCrossRefGoogle Scholar
  158. 158.
    Nuccitelli, R., & Erickson, C. A. (1983). Embryonic cell motility can be guided by physiological electric fields. Experimental Cell Research, 147, 195–201.PubMedCrossRefGoogle Scholar
  159. 159.
    Nuccitelli, R., & Smart, T. (1989). Extracellular calcium levels strongly influence neural crest cell galvanotaxis. Biological Bulletin, 176, 130–135.CrossRefGoogle Scholar
  160. 160.
    Adams, D. S., Robinson, K. R., Fukumoto, T., et al. (2006). Early, H+-V-ATPase-dependent proton flux is necessary for consistent left-right patterning of non-mammalian vertebrates. Development, 133, 1657–1671.PubMedCrossRefGoogle Scholar
  161. 161.
    Denker, S. P., & Barber, D. L. (2002). Cell migration requires both ion translocation and cytoskeletal anchoring by the Na-H exchanger NHE1. Journal of Cell Biology, 159, 1087–1096.PubMedCrossRefGoogle Scholar
  162. 162.
    Levin, M., Buznikov, G. A., & Lauder, J. M. (2006). Of minds and embryos: Left-right asymmetry and the serotonergic controls of pre-neural morphogenesis. Developmental Neuroscience, 28, 171–185.PubMedCrossRefGoogle Scholar
  163. 163.
    Shi, H., Halvorsen, Y. D., Ellis, P. N., Wilkison, W. O., & Zemel, M. B. (2000). Role of intracellular calcium in human adipocyte differentiation. Physiological Genomics, 2000, 75–82.Google Scholar
  164. 164.
    Zayzafoon, M. (2006). Calcium/calmodulin signaling controls osteoblast growth and differentiation. Journal of Cellular Biochemistry, 97, 56–70.PubMedCrossRefGoogle Scholar
  165. 165.
    Munaron, L., Antoniotti, S., & Lovisolo, D. (2004). Intracellular calcium signals and control of cell proliferation: How many mechanisms? Journal of Cellular and Molecular Medicine, 8, 161–168.PubMedCrossRefGoogle Scholar
  166. 166.
    Whitaker, M. (2006). Calcium microdomains and cell cycle control. Cell Calcium, 40, 585–592.PubMedCrossRefGoogle Scholar
  167. 167.
    Soliman, E. M., Rodrigues, M. A., Gomes, D. A., et al. (2009). Intracellular calcium signals regulate growth of hepatic stellate cells via specific effects on cell cycle progression. Cell Calcium, 45, 284–292.PubMedCrossRefGoogle Scholar
  168. 168.
    Palma, V., Kukuljan, M., & Mayor, R. (2001). Calcium mediates dorsoventral patterning of mesoderm in Xenopus. Current Biology, 11, 1606–1610.PubMedCrossRefGoogle Scholar
  169. 169.
    Sun, S., Liu, Y., Lipsky, S., & Cho, M. (2007). Physical manipulation of calcium oscillations facilitates osteodifferentiation of human mesenchymal stem cells. FASEB Journal, 21, 1472–1480.PubMedCrossRefGoogle Scholar
  170. 170.
    Trollinger, D. R., Isseroff, R. R., & Nuccitelli, R. (2002). Calcium channel blockers inhibit galvanotaxis in human keratinocytes. Journal of Cellular Physiology, 193, 1–9.PubMedCrossRefGoogle Scholar
  171. 171.
    Albrieux, M., & Villaz, M. (2000). Bilateral asymmetry of the inositol trisphosphate-mediated calcium signaling in two-cell ascidian embryos. Biology of the Cell, 92, 277–284.PubMedCrossRefGoogle Scholar
  172. 172.
    Linask, K. K., Han, M. D., Artman, M., & Ludwig, C. A. (2001). Sodium-calcium exchanger (NCX-1) and calcium modulation: NCX protein expression patterns and regulation of early heart development. Developmental Dynamics, 221, 249–264.PubMedCrossRefGoogle Scholar
  173. 173.
    McGrath, J., Somlo, S., Makova, S., Tian, X., & Brueckner, M. (2003). Two populations of node monocilia initiate left-right asymmetry in the mouse. Cell, 114, 61–73.PubMedCrossRefGoogle Scholar
  174. 174.
    Raya, A., Kawakami, Y., Rodriguez-Esteban, C., et al. (2004). Notch activity acts as a sensor for extracellular calcium during vertebrate left-right determination. Nature, 427, 121–128.PubMedCrossRefGoogle Scholar
  175. 175.
    Schneider, I., Houston, D. W., Rebagliati, M. R., & Slusarski, D. C. (2007). Calcium fluxes in dorsal forerunner cells antagonize {beta}-catenin and alter left-right patterning. Development.Google Scholar
  176. 176.
    Slusarski, D. C., & Pelegri, F. (2007). Calcium signaling in vertebrate embryonic patterning and morphogenesis. Developmental Biology, 307, 1–13.PubMedCrossRefGoogle Scholar
  177. 177.
    Webb, S. E., & Miller, A. L. (2000). Calcium signalling during zebrafish embryonic development. Bioessays, 22, 113–123.PubMedCrossRefGoogle Scholar
  178. 178.
    Jaffe, L. F. (1999). Organization of early development by calcium patterns. Bioessays, 21, 657–667.PubMedCrossRefGoogle Scholar
  179. 179.
    Jaffe, L. (1995). Calcium waves and development. In Calcium waves, gradients and oscillations (pp. 4–17). Chichester: CIBA Foundation.Google Scholar
  180. 180.
    Konig, S., Beguet, A., Bader, C. R., & Bernheim, L. (2006). The calcineurin pathway links hyperpolarization (Kir2.1)-induced Ca2+ signals to human myoblast differentiation and fusion. Development, 133, 3107–3114.PubMedCrossRefGoogle Scholar
  181. 181.
    Nilius, B., Schwarz, G., & Droogmans, G. (1993). Control of intracellular calcium by membrane potential in human melanoma cells. American Journal of Physiology, 265, C1501–C1510.PubMedGoogle Scholar
  182. 182.
    Nilius, B., & Wohlrab, W. (1992). Potassium channels and regulation of proliferation of human melanoma cells. Journal of Physiology, 445, 537–548.PubMedGoogle Scholar
  183. 183.
    Sasaki, M., Gonzalez-Zulueta, M., Huang, H., et al. (2000). Dynamic regulation of neuronal NO synthase transcription by calcium influx through a CREB family transcription factor-dependent mechanism. Proceedings of the National Academy of Sciences of the United States of America, 97, 8617–8622.PubMedCrossRefGoogle Scholar
  184. 184.
    Bidaud, I., Mezghrani, A., Swayne, L. A., Monteil, A., & Lory, P. (2006). Voltage-gated calcium channels in genetic diseases. Biochimica et Biophysica Acta, 1763, 1169–1174.PubMedGoogle Scholar
  185. 185.
    Cherubini, A., Hofmann, G., Pillozzi, S., et al. (2005). Human ether-a-go-go-related gene 1 channels are physically linked to beta1 integrins and modulate adhesion-dependent signaling. Molecular Biology of the Cell, 16, 2972–2983.PubMedCrossRefGoogle Scholar
  186. 186.
    Arcangeli, A., & Becchetti, A. (2006). Complex functional interaction between integrin receptors and ion channels. Trends in Cell Biology, 16, 631–639.PubMedCrossRefGoogle Scholar
  187. 187.
    Liu, J., DeYoung, S. M., Zhang, M., Cheng, A., & Saltiel, A. R. (2005). Changes in integrin expression during adipocyte differentiation. Cell Metabolism, 2, 165–177.PubMedCrossRefGoogle Scholar
  188. 188.
    Meyers, V. E., Zayzafoon, M., Gonda, S. R., Gathings, W. E., & McDonald, J. M. (2004). Modeled microgravity disrupts collagen I/integrin signaling during osteoblastic differentiation of human mesenchymal stem cells. Journal of Cellular Biochemistry, 93, 697–707.PubMedCrossRefGoogle Scholar
  189. 189.
    Nesti, L. J., Caterson, E. J., Wang, M., et al. (2002). TGF-β1 calcium signaling increases α5 integrin expression in osteoblasts. Journal of Orthopaedic Research, 20, 1042–1049.PubMedCrossRefGoogle Scholar
  190. 190.
    Iwasaki, H., Murata, Y., Kim, Y., et al. (2008). A voltage-sensing phosphatase, Ci-VSP, which shares sequence identity with PTEN, dephosphorylates phosphatidylinositol 4, 5-bisphosphate. Proceedings of the National Academy of Sciences of the United States of America, 105, 7970–7975.PubMedCrossRefGoogle Scholar
  191. 191.
    Murata, Y., Iwasaki, H., Sasaki, M., Inaba, K., & Okamura, Y. (2005). Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor. Nature, 435, 1239–1243.PubMedCrossRefGoogle Scholar
  192. 192.
    Murata, Y., & Okamura, Y. (2007). Depolarization activates the phosphoinositide phosphatase Ci-VSP, as detected in Xenopus oocytes coexpressing sensors of PIP2. Journal of Physiology, 583, 875–889.PubMedCrossRefGoogle Scholar
  193. 193.
    Murata, Y., Iwasaki, H., Sasaki, M., Inaba, K., & Okamura, Y. (2005). Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor. Nature, 435, 1239–1243.PubMedCrossRefGoogle Scholar
  194. 194.
    Adams, D. S. (2008). A new tool for tissue engineers: Ions as regulators of morphogenesis during development and regeneration. Tissue Engineering. Part A, 14, 1461–1468.PubMedCrossRefGoogle Scholar
  195. 195.
    Chen, J. G., & Rudnick, G. (2000). Permeation and gating residues in serotonin transporter. Proceedings of the National Academy of Sciences of the United States of America, 97, 1044–1049.PubMedCrossRefGoogle Scholar
  196. 196.
    Fukumoto, T., Blakely, R., & Levin, M. (2005). Serotonin transporter function is an early step in left-right patterning in chick and frog embryos. Developmental Neuroscience, 27, 349–363.PubMedCrossRefGoogle Scholar
  197. 197.
    Hegle, A. P., Marble, D. D., & Wilson, G. F. (2006). A voltage-driven switch for ion-independent signaling by ether-a-go-go K+ channels. Proceedings of the National Academy of Sciences of the United States of America, 103, 2886–2891.PubMedCrossRefGoogle Scholar
  198. 198.
    Yang, S. J., Liang, H. L., Ning, G., & Wong-Riley, M. T. (2004). Ultrastructural study of depolarization-induced translocation of NRF-2 transcription factor in cultured rat visual cortical neurons. European Journal of Neuroscience, 19, 1153–1162.PubMedCrossRefGoogle Scholar
  199. 199.
    Li, L., Liu, F., Salmonsen, R. A., et al. (2002). PTEN in neural precursor cells: Regulation of migration, apoptosis, and proliferation. Molecular and Cellular Neurosciences, 20, 21–29.PubMedCrossRefGoogle Scholar
  200. 200.
    Poo, M. M., & Robinson, K. R. (1977). Electrophoresis of concanavalin-a receptors along embryonic muscle-cell membrane. Nature, 265, 602–605.PubMedCrossRefGoogle Scholar
  201. 201.
    Cooper, M. S., Miller, J. P., & Fraser, S. E. (1989). Electrophoretic repatterning of charged cytoplasmic molecules within tissues coupled by gap junctions by externally applied electric fields. Developmental Biology, 132, 179–188.PubMedCrossRefGoogle Scholar
  202. 202.
    Fang, K. S., Ionides, E., Oster, G., Nuccitelli, R., & Isseroff, R. R. (1999). Epidermal growth factor receptor relocalization and kinase activity are necessary for directional migration of keratinocytes in DC electric fields. Journal of Cell Science, 112, 1967–1978.PubMedGoogle Scholar
  203. 203.
    Giugni, T. D., Braslau, D. L., & Haigler, H. T. (1987). Electric field-induced redistribution and postfield relaxation of epidermal growth factor receptors on A431 cells. Journal of Cell Biology, 104, 1291–1297.PubMedCrossRefGoogle Scholar
  204. 204.
    Stollberg, J., & Fraser, S. E. (1988). Acetylcholine receptors and concanavalin A-binding sites on cultured Xenopus muscle cells: electrophoresis, diffusion, and aggregation. Journal of Cell Biology, 107, 1397–1408.PubMedCrossRefGoogle Scholar
  205. 205.
    Orida, N., & Poo, M. M. (1978). Electrophoretic movement and localisation of acetylcholine receptors in the embryonic muscle cell membrane. Nature, 275, 31–35.PubMedCrossRefGoogle Scholar
  206. 206.
    Fukumoto, T., Kema, I. P., & Levin, M. (2005). Serotonin signaling is a very early step in patterning of the left-right axis in chick and frog embryos. Current Biology, 15, 794–803.PubMedCrossRefGoogle Scholar
  207. 207.
    Woodruff, R., & Telfer, W. (1980). Electrophoresis of proteins in intercellular bridges. Nature, 286, 84–86.PubMedCrossRefGoogle Scholar
  208. 208.
    Korohoda, W., Mycielska, M., Janda, E., & Madeja, Z. (2000). Immediate and long-term galvanotactic responses of Amoeba proteus to dc electric fields. Cell Motility and the Cytoskeleton, 45, 10–26.PubMedCrossRefGoogle Scholar
  209. 209.
    Tao, Y., Yan, D., Yang, Q., Zeng, R., & Wang, Y. (2006). Low K+ promotes NF-kappaB/DNA binding in neuronal apoptosis induced by K+ loss. Molecular and Cellular Biology, 26, 1038–1050.PubMedCrossRefGoogle Scholar
  210. 210.
    Gillies, R., Martinez-Zaguilan, R., Peterson, E., & Perona, R. (1992). Role of intracellular pH in mammalian cell proliferation. Cellular Physiology and Biochemistry, 2, 159–179.CrossRefGoogle Scholar
  211. 211.
    Uzman, J. A., Patil, S., Uzgare, A. R., & Sater, A. K. (1998). The role of intracellular alkalinization in the establishment of anterior neural fate in Xenopus. Developmental Biology, 193, 10–20.PubMedCrossRefGoogle Scholar
  212. 212.
    Schuldiner, S., & Rozengurt, E. (1982). Na+/H+ antiport in Swiss 3 T3 cells: Mitogenic stimulation leads to cytoplasmic alkalinization. Proceedings of the National Academy of Sciences of the United States of America, 79, 7778–7782.PubMedCrossRefGoogle Scholar
  213. 213.
    Zhong, M., Kim, S. J., & Wu, C. (1999). Sensitivity of Drosophila heat shock transcription factor to low pH. Journal of Biological Chemistry, 274, 3135–3140.PubMedCrossRefGoogle Scholar
  214. 214.
    Lin, H., Xiao, J., Luo, X., et al. (2007). Overexpression HERG K(+) channel gene mediates cell-growth signals on activation of oncoproteins SP1 and NF-kappaB and inactivation of tumor suppressor Nkx3.1. Journal of Cellular Physiology, 212, 137–147.PubMedCrossRefGoogle Scholar
  215. 215.
    Chudotvorova, I., Ivanov, A., Rama, S., et al. (2005). Early expression of KCC2 in rat hippocampal cultures augments expression of functional GABA synapses. Journal of Physiology, 566, 671–679.PubMedCrossRefGoogle Scholar
  216. 216.
    Burrone, J., O’Byrne, M., & Murthy, V. N. (2002). Multiple forms of synaptic plasticity triggered by selective suppression of activity in individual neurons. Nature, 420, 414–418.PubMedCrossRefGoogle Scholar
  217. 217.
    Beech, J. A. (1997). Bioelectric potential gradients may initiate cell cycling: ELF and zeta potential gradients may mimic this effect. Bioelectromagnetics, 18, 341–348.PubMedCrossRefGoogle Scholar
  218. 218.
    Redmann, K., Jenssen, H. L., & Kohler, H. J. (1974). Experimental and functional changes in transmembrane potential and zeta potential of single cultured cells. Experimental Cell Research, 87, 281–289.PubMedCrossRefGoogle Scholar
  219. 219.
    Sherbet, G. V., & Lakshmi, M. S. (1974). The surface properties of some human intracranial tumour cell lines in relation to their malignancy. Oncology, 29, 335–347.PubMedCrossRefGoogle Scholar
  220. 220.
    James, A. M., Ambrose, E. J., & Lowick, J. H. (1956). Differences between the electrical charge carried by normal and homologous tumour cells. Nature, 177, 576–577.PubMedCrossRefGoogle Scholar
  221. 221.
    Weihua, Z., Tsan, R., Schroit, A. J., & Fidler, I. J. (2005). Apoptotic cells initiate endothelial cell sprouting via electrostatic signaling. Cancer Research, 65, 11529–11535.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press 2009

Authors and Affiliations

  • Sarah Sundelacruz
    • 1
  • Michael Levin
    • 2
  • David L. Kaplan
    • 1
    Email author
  1. 1.Department of Biomedical EngineeringTufts UniversityMedfordUSA
  2. 2.Department of BiologyTufts UniversityBostonUSA

Personalised recommendations