Stem Cell Reviews and Reports

, Volume 5, Issue 2, pp 159–173 | Cite as

Activin A-Induced Differentiation of Embryonic Stem Cells into Endoderm and Pancreatic Progenitors—The Influence of Differentiation Factors and Culture Conditions

  • Sabine Sulzbacher
  • Insa S. Schroeder
  • Thuy T. Truong
  • Anna M. Wobus


The differentiation of murine and human embryonic stem (ES) cells into pancreatic cell types has been shown by several methods including spontaneous differentiation, formation of multi-lineage progenitors, lineage selection or transgene expression. However, these strategies led to a mixture of cells of all three primary germ layers and only a low percentage of definitive endoderm cells giving rise to pancreas, liver, lung and intestine. To reproducibly generate functional insulin-producing cells, ES cells have to be differentiated via definitive endoderm and pancreatic endocrine progenitors recapitulating the in vivo development. Activin A, a member of the transforming growth factor beta superfamily, has been shown to induce definitive endoderm cells dependent on concentration, culture conditions and time of application. Moreover, serum components or contamination by feeder cells as well as differentiation and proliferation factors are critical for successful generation of activin A-induced ES cells into endoderm and pancreatic cells. The review presents an overview on those factors that influence activin A activity on endoderm and endocrine progenitor cells and determines the role of signaling factors in the differentiation process into the pancreatic lineage.


Embryonic stem cells Human Mouse In vitro differentiation Activin A Definitive endoderm Pancreatic endocrine lineage Insulin-producing beta cells 


  1. 1.
    Evans, M. J., & Kaufman, M. H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature, 292(5819), 154–156.PubMedCrossRefGoogle Scholar
  2. 2.
    Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282(5391), 1145–1147.PubMedCrossRefGoogle Scholar
  3. 3.
    Wobus, A. M., & Boheler, K. R. (2005). Embryonic stem cells: Prospects for developmental biology and cell therapy. Physiological Reviews, 85(2), 635–678.PubMedCrossRefGoogle Scholar
  4. 4.
    Murry, C. E., & Keller, G. (2008). Differentiation of embryonic stem cells to clinically relevant populations: Lessons from embryonic development. Cell, 132(4), 661–680.PubMedCrossRefGoogle Scholar
  5. 5.
    Klimanskaya, I., Chung, Y., Becker, S., Lu, S. J., & Lanza, R. (2007). Derivation of human embryonic stem cells from single blastomeres. Nature Protocols, 2(8), 1963–1972.PubMedCrossRefGoogle Scholar
  6. 6.
    Wells, J. M., & Melton, D. A. (1999). Vertebrate endoderm development. Annual Review of Cell and Developmental Biology, 15, 393–410.PubMedCrossRefGoogle Scholar
  7. 7.
    Kroon, E., Martinson, L. A., Kadoya, K., Bang, A. G., Kelly, O. G., Eliazer, S., et al. (2008). Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nature Biotechnology, 26(4), 443–452.PubMedCrossRefGoogle Scholar
  8. 8.
    D’Amour, K. A., Bang, A. G., Eliazer, S., Kelly, O. G., Agulnick, A. D., Smart, N. G., et al. (2006). Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nature Biotechnology, 24(11), 1392–1401.PubMedCrossRefGoogle Scholar
  9. 9.
    Stewart, M. H., Bosse, M., Chadwick, K., Menendez, P., Bendall, S. C., & Bhatia, M. (2006). Clonal isolation of hESCs reveals heterogeneity within the pluripotent stem cell compartment. Nature Methods, 3(10), 807–815.PubMedCrossRefGoogle Scholar
  10. 10.
    Osafune, K., Caron, L., Borowiak, M., Martinez, R. J., Fitz-Gerald, C. S., Sato, Y., et al. (2008). Marked differences in differentiation propensity among human embryonic stem cell lines. Nature Biotechnology, 26(3), 313–315.PubMedCrossRefGoogle Scholar
  11. 11.
    Kahan, B. W., Jacobson, L. M., Hullett, D. A., Ochoada, J. M., Oberley, T. D., Lang, K. M., et al. (2003). Pancreatic precursors and differentiated islet cell types from murine embryonic stem cells: An in vitro model to study islet differentiation. Diabetes, 52(8), 2016–2024.PubMedCrossRefGoogle Scholar
  12. 12.
    Leon-Quinto, T., Jones, J., Skoudy, A., Burcin, M., & Soria, B. (2004). In vitro directed differentiation of mouse embryonic stem cells into insulin-producing cells. Diabetologia, 47(8), 1442–1451.PubMedCrossRefGoogle Scholar
  13. 13.
    Soria, B., Roche, E., Berna, G., Leon-Quinto, T., Reig, J. A., & Martin, F. (2000). Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes, 49(2), 157–162.PubMedCrossRefGoogle Scholar
  14. 14.
    Blyszczuk, P., Czyz, J., Kania, G., Wagner, M., Roll, U., St Onge, L., et al. (2003). Expression of Pax4 in embryonic stem cells promotes differentiation of nestin-positive progenitor and insulin-producing cells. Proceedings of the National Academy of Sciences of the United States of America, 100(3), 998–1003.PubMedCrossRefGoogle Scholar
  15. 15.
    Boretti, M. I., & Gooch, K. J. (2007). Transgene expression level and inherent differences in target gene activation determine the rate and fate of neurogenin3-mediated islet cell differentiation in vitro. Tissue Engineering, 13(4), 775–788.PubMedCrossRefGoogle Scholar
  16. 16.
    Ku, H. T., Zhang, N., Kubo, A., O’Connor, R., Mao, M., Keller, G., et al. (2004). Committing embryonic stem cells to early endocrine pancreas in vitro. Stem Cells, 22(7), 1205–1217.PubMedCrossRefGoogle Scholar
  17. 17.
    Ku, H. T., Chai, J., Kim, Y. J., White, P., Purohit-Ghelani, S., Kaestner, K. H., et al. (2007). Insulin-expressing colonies developed from murine embryonic stem cell-derived progenitors. Diabetes, 56(4), 921–929.PubMedCrossRefGoogle Scholar
  18. 18.
    Miyazaki, S., Yamato, E., & Miyazaki, J. (2004). Regulated expression of pdx-1 promotes in vitro differentiation of insulin-producing cells from embryonic stem cells. Diabetes, 53(4), 1030–1037.PubMedCrossRefGoogle Scholar
  19. 19.
    Serafimidis, I., Rakatzi, I., Episkopou, V., Gouti, M., & Gavalas, A. (2008). Novel effectors of directed and Ngn3-mediated differentiation of mouse embryonic stem cells into endocrine pancreas progenitors. Stem Cells, 26(1), 3–16.PubMedCrossRefGoogle Scholar
  20. 20.
    Shiroi, A., Ueda, S., Ouji, Y., Saito, K., Moriya, K., Sugie, Y., et al. (2005). Differentiation of embryonic stem cells into insulin-producing cells promoted by Nkx2.2 gene transfer. World Journal of Gastroenterology, 11(27), 4161–4166.PubMedGoogle Scholar
  21. 21.
    Treff, N. R., Vincent, R. K., Budde, M. L., Browning, V. L., Magliocca, J. F., Kapur, V., et al. (2006). Differentiation of embryonic stem cells conditionally expressing neurogenin 3. Stem Cells, 24(11), 2529–2537.PubMedCrossRefGoogle Scholar
  22. 22.
    Hori, Y., Rulifson, I. C., Tsai, B. C., Heit, J. J., Cahoy, J. D., & Kim, S. K. (2002). Growth inhibitors promote differentiation of insulin-producing tissue from embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 99(25), 16105–16110.PubMedCrossRefGoogle Scholar
  23. 23.
    Micallef, S. J., Janes, M. E., Knezevic, K., Davis, R. P., Elefanty, A. G., & Stanley, E. G. (2005). Retinoic acid induces Pdx1-positive endoderm in differentiating mouse embryonic stem cells. Diabetes, 54(2), 301–305.PubMedCrossRefGoogle Scholar
  24. 24.
    Shi, Y., Hou, L., Tang, F., Jiang, W., Wang, P., Ding, M., et al. (2005). Inducing embryonic stem cells to differentiate into pancreatic beta cells by a novel three-step approach with activin A and all-trans retinoic acid. Stem Cells, 23(5), 656–662.PubMedCrossRefGoogle Scholar
  25. 25.
    McKiernan, E., O’Driscoll, L., Kasper, M., Barron, N., O’Sullivan, F., & Clynes, M. (2007). Directed differentiation of mouse embryonic stem cells into pancreatic-like or neuronal- and glial-like phenotypes. Tissue Engineering, 13(10), 2419–2430.PubMedCrossRefGoogle Scholar
  26. 26.
    Vaca, P., Martin, F., Vegara-Meseguer, J. M., Rovira, J. M., Berna, G., & Soria, B. (2006). Induction of differentiation of embryonic stem cells into insulin-secreting cells by fetal soluble factors. Stem Cells, 24(2), 258–265.PubMedCrossRefGoogle Scholar
  27. 27.
    Lumelsky, N., Blondel, O., Laeng, P., Velasco, I., Ravin, R., & McKay, R. (2001). Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science, 292(5520), 1389–1394.PubMedCrossRefGoogle Scholar
  28. 28.
    Rajagopal, J., Anderson, W. J., Kume, S., Martinez, O. I., & Melton, D. A. (2003). Insulin staining of ES cell progeny from insulin uptake. Science, 299(5605), 363.PubMedGoogle Scholar
  29. 29.
    Sipione, S., Eshpeter, A., Lyon, J. G., Korbutt, G. S., & Bleackley, R. C. (2004). Insulin expressing cells from differentiated embryonic stem cells are not beta cells. Diabetologia, 47(3), 499–508.PubMedCrossRefGoogle Scholar
  30. 30.
    Hansson, M., Tonning, A., Frandsen, U., Petri, A., Rajagopal, J., Englund, M. C., et al. (2004). Artifactual insulin release from differentiated embryonic stem cells. Diabetes, 53(10), 2603–2609.PubMedCrossRefGoogle Scholar
  31. 31.
    Paek, H. J., Morgan, J. R., & Lysaght, M. J. (2005). Sequestration and synthesis: The source of insulin in cell clusters differentiated from murine embryonic stem cells. Stem Cells, 23(7), 862–867.PubMedCrossRefGoogle Scholar
  32. 32.
    Gradwohl, G., Dierich, A., LeMeur, M., & Guillemot, F. (2000). Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proceedings of the National Academy of Sciences of the United States of America, 97(4), 1607–1611.PubMedCrossRefGoogle Scholar
  33. 33.
    Lee, J., Wu, Y., Qi, Y., Xue, H., Liu, Y., Scheel, D., et al. (2003). Neurogenin3 participates in gliogenesis in the developing vertebrate spinal cord. Developments in Biologicals, 253(1), 84–98.CrossRefGoogle Scholar
  34. 34.
    Habener, J. F., Kemp, D. M., & Thomas, M. K. (2005). Minireview: Transcriptional regulation in pancreatic development. Endocrinology, 146(3), 1025–1034.PubMedCrossRefGoogle Scholar
  35. 35.
    Nakagawa, Y., & O’Leary, D. D. (2001). Combinatorial expression patterns of LIM-homeodomain and other regulatory genes parcellate developing thalamus. Journal of Neuroscience, 21(8), 2711–2725.PubMedGoogle Scholar
  36. 36.
    Schwitzgebel, V. M., Scheel, D. W., Conners, J. R., Kalamaras, J., Lee, J. E., Anderson, D. J., et al. (2000). Expression of neurogenin3 reveals an islet cell precursor population in the pancreas. Development, 127(16), 3533–3542.PubMedGoogle Scholar
  37. 37.
    Okabe, S., Forsberg-Nilsson, K., Spiro, A. C., Segal, M., & McKay, R. D. (1996). Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro. Mechanisms of Development, 59(1), 89–102.PubMedCrossRefGoogle Scholar
  38. 38.
    Blyszczuk, P., Asbrand, C., Rozzo, A., Kania, G., St Onge, L., Rupnik, M., et al. (2004). Embryonic stem cells differentiate into insulin-producing cells without selection of nestin-expressing cells. International Journal of Developmental Biology, 48(10), 1095–1104.PubMedCrossRefGoogle Scholar
  39. 39.
    Kania, G., Blyszczuk, P., Jochheim, A., Ott, M., & Wobus, A. M. (2004). Generation of glycogen- and albumin-producing hepatocyte-like cells from embryonic stem cells. Biological Chemistry, 385(10), 943–953.PubMedCrossRefGoogle Scholar
  40. 40.
    Wiese, C., Rolletschek, A., Kania, G., Blyszczuk, P., Tarasov, K. V., Tarasova, Y., et al. (2004). Nestin expression—A property of multi-lineage progenitor cells? Cellular and Molecular Life Sciences, 61(19–20), 2510–2522.PubMedCrossRefGoogle Scholar
  41. 41.
    Schroeder, I. S., Rolletschek, A., Blyszczuk, P., Kania, G., & Wobus, A. M. (2006). Differentiation of mouse embryonic stem cells to insulin-producing cells. Nature Protocols, 1(2), 495–507.PubMedCrossRefGoogle Scholar
  42. 42.
    Boyd, A. S., Wu, D. C., Higashi, Y., & Wood, K. J. (2008). A comparison of protocols used to generate insulin-producing cell clusters from mouse embryonic stem cells. Stem Cells, 26(5), 1128–1137.PubMedCrossRefGoogle Scholar
  43. 43.
    Baetge, E. E. (2008). Production of beta-cells from human embryonic stem cells. Diabetes, Obesity and Metabolism, 10(Suppl 4), 186–194.PubMedCrossRefGoogle Scholar
  44. 44.
    Smith, J. C., Price, B. M., Van Nimmen, K., & Huylebroeck, D. (1990). Identification of a potent Xenopus mesoderm-inducing factor as a homologue of activin A. Nature, 345(6277), 729–731.PubMedCrossRefGoogle Scholar
  45. 45.
    Gurdon, J. B., Harger, P., Mitchell, A., & Lemaire, P. (1994). Activin signalling and response to a morphogen gradient. Nature, 371(6497), 487–492.PubMedCrossRefGoogle Scholar
  46. 46.
    Grapin-Botton, A., & Constam, D. (2007). Evolution of the mechanisms and molecular control of endoderm formation. Mechanisms of Development, 124(4), 253–278.PubMedCrossRefGoogle Scholar
  47. 47.
    Tam, P. P., Kanai-Azuma, M., & Kanai, Y. (2003). Early endoderm development in vertebrates: Lineage differentiation and morphogenetic function. Current Opinion in Genetics & Development, 13(4), 393–400.CrossRefGoogle Scholar
  48. 48.
    Tam, P. P., & Loebel, D. A. (2007). Gene function in mouse embryogenesis: Get set for gastrulation. Nature Reviews. Genetics, 8(5), 368–381.PubMedCrossRefGoogle Scholar
  49. 49.
    Chen, Y. G., Wang, Q., Lin, S. L., Chang, C. D., Chuang, J., & Ying, S. Y. (2006). Activin signaling and its role in regulation of cell proliferation, apoptosis, and carcinogenesis. Experimental Biology and Medicine (Maywood), 231(5), 534–544.Google Scholar
  50. 50.
    Kubo, A., Shinozaki, K., Shannon, J. M., Kouskoff, V., Kennedy, M., Woo, S., et al. (2004). Development of definitive endoderm from embryonic stem cells in culture. Development, 131(7), 1651–1662.PubMedCrossRefGoogle Scholar
  51. 51.
    Tada, S., Era, T., Furusawa, C., Sakurai, H., Nishikawa, S., Kinoshita, M., et al. (2005). Characterization of mesendoderm: A diverging point of the definitive endoderm and mesoderm in embryonic stem cell differentiation culture. Development, 132(19), 4363–4374.PubMedCrossRefGoogle Scholar
  52. 52.
    Iwasaki, S., Hattori, A., Sato, M., Tsujimoto, M., & Kohno, M. (1996). Characterization of the bone morphogenetic protein-2 as a neurotrophic factor. Induction of neuronal differentiation of PC12 cells in the absence of mitogen-activated protein kinase activation. Journal of Biological Chemistry, 271(29), 17360–17365.PubMedCrossRefGoogle Scholar
  53. 53.
    Rolletschek, A., Kania, G., & Wobus, A. M. (2006). Generation of pancreatic insulin-producing cells from embryonic stem cells—‘Proof of principle’, but questions still unanswered. Diabetologia, 49(11), 2541–2545.PubMedCrossRefGoogle Scholar
  54. 54.
    Moritoh, Y., Yamato, E., Yasui, Y., Miyazaki, S., & Miyazaki, J. (2003). Analysis of insulin-producing cells during in vitro differentiation from feeder-free embryonic stem cells. Diabetes, 52(5), 1163–1168.PubMedCrossRefGoogle Scholar
  55. 55.
    Bai, L., Meredith, G., & Tuch, B. E. (2005). Glucagon-like peptide-1 enhances production of insulin in insulin-producing cells derived from mouse embryonic stem cells. Journal of Endocrinology, 186(2), 343–352.PubMedCrossRefGoogle Scholar
  56. 56.
    Marenah, L., McCluskey, J. T., Abdel-Wahab, Y. H., O’Harte, F. P., McClenaghan, N. H., & Flatt, P. R. (2006). A stable analogue of glucose-dependent insulinotropic polypeptide, GIP(LysPAL16), enhances functional differentiation of mouse embryonic stem cells into cells expressing islet-specific genes and hormones. Biological Chemistry, 387(7), 941–947.PubMedCrossRefGoogle Scholar
  57. 57.
    Xu, X., Kahan, B., Forgianni, A., Jing, P., Jacobson, L., Browning, V., et al. (2006). Endoderm and pancreatic islet lineage differentiation from human embryonic stem cells. Cloning Stem Cells, 8(2), 96–107.PubMedCrossRefGoogle Scholar
  58. 58.
    D’Amour, K. A., Agulnick, A. D., Eliazer, S., Kelly, O. G., Kroon, E., & Baetge, E. E. (2005). Efficient differentiation of human embryonic stem cells to definitive endoderm. Nature Biotechnology, 23(12), 1534–1541.PubMedCrossRefGoogle Scholar
  59. 59.
    Gadue, P., Huber, T. L., Paddison, P. J., & Keller, G. M. (2006). Wnt and TGF-beta signaling are required for the induction of an in vitro model of primitive streak formation using embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 103(45), 16806–16811.PubMedCrossRefGoogle Scholar
  60. 60.
    McLean, A. B., D’Amour, K. A., Jones, K. L., Krishnamoorthy, M., Kulik, M. J., Reynolds, D. M., et al. (2007). Activin a efficiently specifies definitive endoderm from human embryonic stem cells only when phosphatidylinositol 3-kinase signaling is suppressed. Stem Cells, 25(1), 29–38.PubMedCrossRefGoogle Scholar
  61. 61.
    Price, P. J., Goldsborough, M. D., & Tilkins, M. L. (1998) Embryonic stem cell serum replacement. Patent WO 98/30679.Google Scholar
  62. 62.
    Johansson, B. M., & Wiles, M. V. (1995). Evidence for involvement of activin A and bone morphogenetic protein 4 in mammalian mesoderm and hematopoietic development. Molecular and Cellular Biology, 15(1), 141–151.PubMedGoogle Scholar
  63. 63.
    Proetzel, G., & Wiles, M. V. (2002). The use of a chemically defined media for the analyses of early development in ES cells and mouse embryos. Methods in Molecular Biology, 185, 17–26.PubMedGoogle Scholar
  64. 64.
    Soto-Gutierrez, A., Kobayashi, N., Rivas-Carrillo, J. D., Navarro-Alvarez, N., Zhao, D., Okitsu, T., et al. (2006). Reversal of mouse hepatic failure using an implanted liver-assist device containing ES cell-derived hepatocytes. Nature Biotechnology, 24(11), 1412–1419.PubMedCrossRefGoogle Scholar
  65. 65.
    Shim, J. H., Kim, S. E., Woo, D. H., Kim, S. K., Oh, C. H., McKay, R., et al. (2007). Directed differentiation of human embryonic stem cells towards a pancreatic cell fate. Diabetologia, 50(6), 1228–1238.PubMedCrossRefGoogle Scholar
  66. 66.
    Phillips, B. W., Hentze, H., Rust, W. L., Chen, Q. P., Chipperfield, H., Tan, E. K., et al. (2007). Directed differentiation of human embryonic stem cells into the pancreatic endocrine lineage. Stem Cells and Development, 16(4), 561–578.PubMedCrossRefGoogle Scholar
  67. 67.
    Cai, J., Zhao, Y., Liu, Y., Ye, F., Song, Z., Qin, H., et al. (2007). Directed differentiation of human embryonic stem cells into functional hepatic cells. Hepatology, 45(5), 1229–1239.PubMedCrossRefGoogle Scholar
  68. 68.
    Yao, S., Chen, S., Clark, J., Hao, E., Beattie, G. M., Hayek, A., et al. (2006). Long-term self-renewal and directed differentiation of human embryonic stem cells in chemically defined conditions. Proceedings of the National Academy of Sciences of the United States of America, 103(18), 6907–6912.PubMedCrossRefGoogle Scholar
  69. 69.
    Yasunaga, M., Tada, S., Torikai-Nishikawa, S., Nakano, Y., Okada, M., Jakt, L. M., et al. (2005). Induction and monitoring of definitive and visceral endoderm differentiation of mouse ES cells. Nature Biotechnology, 23(12), 1542–1550.PubMedCrossRefGoogle Scholar
  70. 70.
    Gouon-Evans, V., Boussemart, L., Gadue, P., Nierhoff, D., Koehler, C. I., Kubo, A., et al. (2006). BMP-4 is required for hepatic specification of mouse embryonic stem cell-derived definitive endoderm. Nature Biotechnology, 24(11), 1402–1411.PubMedCrossRefGoogle Scholar
  71. 71.
    Nakanishi, M., Hamazaki, T. S., Komazaki, S., Okochi, H., & Asashima, M. (2007). Pancreatic tissue formation from murine embryonic stem cells in vitro. Differentiation, 75(1), 1–11.PubMedCrossRefGoogle Scholar
  72. 72.
    Xiao, L., Yuan, X., & Sharkis, S. J. (2006). Activin A maintains self-renewal and regulates fibroblast growth factor, Wnt, and bone morphogenic protein pathways in human embryonic stem cells. Stem Cells, 24(6), 1476–1486.PubMedCrossRefGoogle Scholar
  73. 73.
    James, D., Levine, A. J., Besser, D., & Hemmati-Brivanlou, A. (2005). TGFbeta/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development, 132(6), 1273–1282.PubMedCrossRefGoogle Scholar
  74. 74.
    Vallier, L., Alexander, M., & Pedersen, R. A. (2005). Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells. Journal of Cell Science, 118(Pt 19), 4495–4509.PubMedCrossRefGoogle Scholar
  75. 75.
    Greber, B., Lehrach, H., & Adjaye, J. (2008). Control of early fate decisions in human ES cells by distinct states of TGFss pathway activity. Stem Cells and Development, 17(6), 1065–1078.PubMedCrossRefGoogle Scholar
  76. 76.
    Beattie, G. M., Lopez, A. D., Bucay, N., Hinton, A., Firpo, M. T., King, C. C., et al. (2005). Activin A maintains pluripotency of human embryonic stem cells in the absence of feeder layers. Stem Cells, 23(4), 489–495.PubMedCrossRefGoogle Scholar
  77. 77.
    Tesar, P. J., Chenoweth, J. G., Brook, F. A., Davies, T. J., Evans, E. P., Mack, D. L., et al. (2007). New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature, 448(7150), 196–199.PubMedCrossRefGoogle Scholar
  78. 78.
    Brons, I. G., Smithers, L. E., Trotter, M. W., Rugg-Gunn, P., Sun, B., Chuva de Sousa Lopes, S. M., et al. (2007). Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature, 448(7150), 191–195.PubMedCrossRefGoogle Scholar
  79. 79.
    Niwa, H., Miyazaki, J., & Smith, A. G. (2000). Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nature Genetics, 24(4), 372–376.PubMedCrossRefGoogle Scholar
  80. 80.
    Rodriguez, R. T., Velkey, J. M., Lutzko, C., Seerke, R., Kohn, D. B., O’Shea, K. S., et al. (2007). Manipulation of OCT4 levels in human embryonic stem cells results in induction of differential cell types. Experimental Biology and Medicine (Maywood), 232(10), 1368–1380.CrossRefGoogle Scholar
  81. 81.
    Takenaga, M., Fukumoto, M., & Hori, Y. (2007). Regulated Nodal signaling promotes differentiation of the definitive endoderm and mesoderm from ES cells. Journal of Cell Science, 120(Pt 12), 2078–2090.PubMedCrossRefGoogle Scholar
  82. 82.
    Frandsen, U., Porneki, A. D., Floridon, C., Abdallah, B. M., & Kassem, M. (2007). Activin B mediated induction of Pdx1 in human embryonic stem cell derived embryoid bodies. Biochemical and Biophysical Research Communications, 362(3), 568–574.PubMedCrossRefGoogle Scholar
  83. 83.
    Wodarz, A., & Nusse, R. (1998). Mechanisms of Wnt signaling in development. Annual Review of Cell and Developmental Biology, 14, 59–88.PubMedCrossRefGoogle Scholar
  84. 84.
    Yamaguchi, T. P. (2001). Heads or tails: Wnts and anterior–posterior patterning. Current Biology, 11(17), R713–R724.PubMedCrossRefGoogle Scholar
  85. 85.
    He, X. (2003). A Wnt–Wnt situation. Developmental Cell, 4(6), 791–797.PubMedCrossRefGoogle Scholar
  86. 86.
    Liu, P., Wakamiya, M., Shea, M. J., Albrecht, U., Behringer, R. R., & Bradley, A. (1999). Requirement for Wnt3 in vertebrate axis formation. Nature Genetics, 22(4), 361–365.PubMedCrossRefGoogle Scholar
  87. 87.
    Sinner, D., Rankin, S., Lee, M., & Zorn, A. M. (2004). Sox17 and beta-catenin cooperate to regulate the transcription of endodermal genes. Development, 131(13), 3069–3080.PubMedCrossRefGoogle Scholar
  88. 88.
    Schneider, V. A., & Mercola, M. (2001). Wnt antagonism initiates cardiogenesis in Xenopus laevis. Genes & Development, 15(3), 304–315.CrossRefGoogle Scholar
  89. 89.
    Lickert, H., Kutsch, S., Kanzler, B., Tamai, Y., Taketo, M. M., & Kemler, R. (2002). Formation of multiple hearts in mice following deletion of beta-catenin in the embryonic endoderm. Developmental Cell, 3(2), 171–181.PubMedCrossRefGoogle Scholar
  90. 90.
    Korinek, V., Barker, N., Moerer, P., van Donselaar, E., Huls, G., Peters, P. J., et al. (1998). Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nature Genetics, 19(4), 379–383.PubMedCrossRefGoogle Scholar
  91. 91.
    Gregorieff, A., Grosschedl, R., & Clevers, H. (2004). Hindgut defects and transformation of the gastro-intestinal tract in Tcf4(−/−)/Tcf1(−/−) embryos. EMBO Journal, 23(8), 1825–1833.PubMedCrossRefGoogle Scholar
  92. 92.
    Miyazawa, K., Shinozaki, M., Hara, T., Furuya, T., & Miyazono, K. (2002). Two major Smad pathways in TGF-beta superfamily signalling. Genes Cells, 7(12), 1191–1204.PubMedCrossRefGoogle Scholar
  93. 93.
    Poulain, M., Furthauer, M., Thisse, B., Thisse, C., & Lepage, T. (2006). Zebrafish endoderm formation is regulated by combinatorial Nodal, FGF and BMP signalling. Development, 133(11), 2189–2200.PubMedCrossRefGoogle Scholar
  94. 94.
    Sasai, Y., Lu, B., Piccolo, S., & De Robertis, E. M. (1996). Endoderm induction by the organizer-secreted factors chordin and noggin in Xenopus animal caps. EMBO Journal, 15(17), 4547–4555.PubMedGoogle Scholar
  95. 95.
    Zimmerman, L. B., Jesus-Escobar, J. M., & Harland, R. M. (1996). The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell, 86(4), 599–606.PubMedCrossRefGoogle Scholar
  96. 96.
    Winnier, G., Blessing, M., Labosky, P. A., & Hogan, B. L. (1995). Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes & Development, 9(17), 2105–2116.CrossRefGoogle Scholar
  97. 97.
    Mishina, Y., Suzuki, A., Ueno, N., & Behringer, R. R. (1995). Bmpr encodes a type I bone morphogenetic protein receptor that is essential for gastrulation during mouse embryogenesis. Genes & Development, 9(24), 3027–3037.CrossRefGoogle Scholar
  98. 98.
    Shiraki, N., Yoshida, T., Araki, K., Umezawa, A., Higuchi, Y., Goto, H., et al. (2008). Guided differentiation of embryonic stem cells into Pdx1-expressing regional-specific definitive endoderm. Stem Cells, 26(4), 874–885.PubMedCrossRefGoogle Scholar
  99. 99.
    Sumi, T., Tsuneyoshi, N., Nakatsuji, N., & Suemori, H. (2008). Defining early lineage specification of human embryonic stem cells by the orchestrated balance of canonical Wnt/beta-catenin, Activin/Nodal and BMP signaling. Development, 135(17), 2969–2979.PubMedCrossRefGoogle Scholar
  100. 100.
    Rust, W. L., Sadasivam, A., & Dunn, N. R. (2006). Three-dimensional extracellular matrix stimulates gastrulation-like events in human embryoid bodies. Stem Cells Dev, 15(6), 889–904.PubMedCrossRefGoogle Scholar
  101. 101.
    Yamaguchi, T. P., Harpal, K., Henkemeyer, M., & Rossant, J. (1994). fgfr-1 is required for embryonic growth and mesodermal patterning during mouse gastrulation. Genes & Development, 8(24), 3032–3044.CrossRefGoogle Scholar
  102. 102.
    Deng, C. X., Wynshaw-Boris, A., Shen, M. M., Daugherty, C., Ornitz, D. M., & Leder, P. (1994). Murine FGFR-1 is required for early postimplantation growth and axial organization. Genes & Development, 8(24), 3045–3057.CrossRefGoogle Scholar
  103. 103.
    Ciruna, B., & Rossant, J. (2001). FGF signaling regulates mesoderm cell fate specification and morphogenetic movement at the primitive streak. Dev Cell, 1(1), 37–49.PubMedCrossRefGoogle Scholar
  104. 104.
    Sun, X., Meyers, E. N., Lewandoski, M., & Martin, G. R. (1999). Targeted disruption of Fgf8 causes failure of cell migration in the gastrulating mouse embryo. Genes & Development, 13(14), 1834–1846.CrossRefGoogle Scholar
  105. 105.
    Meyers, E. N., Lewandoski, M., & Martin, G. R. (1998). An Fgf8 mutant allelic series generated by Cre- and Flp-mediated recombination. Nature Genetics, 18(2), 136–141.PubMedCrossRefGoogle Scholar
  106. 106.
    Arman, E., Haffner-Krausz, R., Chen, Y., Heath, J. K., & Lonai, P. (1998). Targeted disruption of fibroblast growth factor (FGF) receptor 2 suggests a role for FGF signaling in pregastrulation mammalian development. Proceedings of the National Academy of Sciences of the United States of America, 95(9), 5082–5087.PubMedCrossRefGoogle Scholar
  107. 107.
    Feldman, B., Poueymirou, W., Papaioannou, V. E., DeChiara, T. M., & Goldfarb, M. (1995). Requirement of FGF-4 for postimplantation mouse development. Science, 267(5195), 246–249.PubMedCrossRefGoogle Scholar
  108. 108.
    Goldin, S. N., & Papaioannou, V. E. (2003). Paracrine action of FGF4 during periimplantation development maintains trophectoderm and primitive endoderm. Genesis, 36(1), 40–47.PubMedCrossRefGoogle Scholar
  109. 109.
    Niswander, L., & Martin, G. R. (1992). Fgf-4 expression during gastrulation, myogenesis, limb and tooth development in the mouse. Development, 114(3), 755–768.PubMedGoogle Scholar
  110. 110.
    Kim, S. K., & Melton, D. A. (1998). Pancreas development is promoted by cyclopamine, a hedgehog signaling inhibitor. Proceedings of the National Academy of Sciences of the United States of America, 95(22), 13036–13041.PubMedCrossRefGoogle Scholar
  111. 111.
    Incardona, J. P., Gaffield, W., Kapur, R. P., & Roelink, H. (1998). The teratogenic Veratrum alkaloid cyclopamine inhibits sonic hedgehog signal transduction. Development, 125(18), 3553–3562.PubMedGoogle Scholar
  112. 112.
    Ramalho-Santos, M., Melton, D. A., & McMahon, A. P. (2000). Hedgehog signals regulate multiple aspects of gastrointestinal development. Development, 127(12), 2763–2772.PubMedGoogle Scholar
  113. 113.
    Apelqvist, A., Ahlgren, U., & Edlund, H. (1997). Sonic hedgehog directs specialised mesoderm differentiation in the intestine and pancreas. Current Biology, 7(10), 801–804.PubMedCrossRefGoogle Scholar
  114. 114.
    Thomas, M. K., Rastalsky, N., Lee, J. H., & Habener, J. F. (2000). Hedgehog signaling regulation of insulin production by pancreatic beta-cells. Diabetes, 49(12), 2039–2047.PubMedCrossRefGoogle Scholar
  115. 115.
    Brickell, P. M., & Tickle, C. (1989). Morphogens in chick limb development. Bioessays, 11(5), 145–149.PubMedCrossRefGoogle Scholar
  116. 116.
    Balmer, J. E., & Blomhoff, R. (2002). Gene expression regulation by retinoic acid. Journal of Lipid Research, 43(11), 1773–1808.PubMedCrossRefGoogle Scholar
  117. 117.
    Fukui, A., & Asashima, M. (1994). Control of cell differentiation and morphogenesis in amphibian development. International Journal of Developmental Biology, 38(2), 257–266.PubMedGoogle Scholar
  118. 118.
    Rohwedel, J., Guan, K., & Wobus, A. M. (1999). Induction of cellular differentiation by retinoic acid in vitro. Cells Tissues Organs, 165(3–4), 190–202.PubMedCrossRefGoogle Scholar
  119. 119.
    Chen, Y., Pan, F. C., Brandes, N., Afelik, S., Solter, M., & Pieler, T. (2004). Retinoic acid signaling is essential for pancreas development and promotes endocrine at the expense of exocrine cell differentiation in Xenopus. Developments in Biologicals, 271(1), 144–160.CrossRefGoogle Scholar
  120. 120.
    Penny, C., & Kramer, B. (2000). The effect of retinoic acid on the proportion of insulin cells in the developing chick pancreas. In Vitro Cellular & Developmental Biology. Animal, 36(1), 14–18.CrossRefGoogle Scholar
  121. 121.
    Stafford, D., & Prince, V. E. (2002). Retinoic acid signaling is required for a critical early step in zebrafish pancreatic development. Current Biology, 12(14), 1215–1220.PubMedCrossRefGoogle Scholar
  122. 122.
    Stafford, D., White, R. J., Kinkel, M. D., Linville, A., Schilling, T. F., & Prince, V. E. (2006). Retinoids signal directly to zebrafish endoderm to specify insulin-expressing beta-cells. Development, 133(5), 949–956.PubMedCrossRefGoogle Scholar
  123. 123.
    Kobayashi, H., Spilde, T. L., Bhatia, A. M., Buckingham, R. B., Hembree, M. J., Prasadan, K., et al. (2002). Retinoid signaling controls mouse pancreatic exocrine lineage selection through epithelial–mesenchymal interactions. Gastroenterology, 123(4), 1331–1340.PubMedCrossRefGoogle Scholar
  124. 124.
    Durston, A. J., Timmermans, J. P., Hage, W. J., Hendriks, H. F., de Vries, N. J., Heideveld, M., et al. (1989). Retinoic acid causes an anteroposterior transformation in the developing central nervous system. Nature, 340(6229), 140–144.PubMedCrossRefGoogle Scholar
  125. 125.
    Okabayashi, K., & Asashima, M. (2003). Tissue generation from amphibian animal caps. Current Opinion in Genetics & Development, 13(5), 502–507.CrossRefGoogle Scholar
  126. 126.
    Rossi, J. M., Dunn, N. R., Hogan, B. L., & Zaret, K. S. (2001). Distinct mesodermal signals, including BMPs from the septum transversum mesenchyme, are required in combination for hepatogenesis from the endoderm. Genes & Development, 15(15), 1998–2009.CrossRefGoogle Scholar
  127. 127.
    Jiang, J., Au, M., Lu, K., Eshpeter, A., Korbutt, G., Fisk, G., et al. (2007). Generation of insulin-producing islet-like clusters from human embryonic stem cells. Stem Cells, 25(8), 1940–1953.PubMedCrossRefGoogle Scholar
  128. 128.
    Philippe, J., Drucker, D. J., Chick, W. L., & Habener, J. F. (1987). Transcriptional regulation of genes encoding insulin, glucagon, and angiotensinogen by sodium butyrate in a rat islet cell line. Molecular and Cellular Biology, 7(1), 560–563.PubMedGoogle Scholar
  129. 129.
    Goicoa, S., Alvarez, S., Ricordi, C., Inverardi, L., & Dominguez-Bendala, J. (2006). Sodium butyrate activates genes of early pancreatic development in embryonic stem cells. Cloning Stem Cells, 8(3), 140–149.PubMedCrossRefGoogle Scholar
  130. 130.
    Soria, B. (2001). In-vitro differentiation of pancreatic beta-cells. Differentiation, 68(4–5), 205–219.PubMedCrossRefGoogle Scholar
  131. 131.
    Mashima, H., Shibata, H., Mine, T., & Kojima, I. (1996). Formation of insulin-producing cells from pancreatic acinar AR42J cells by hepatocyte growth factor. Endocrinology, 137(9), 3969–3976.PubMedCrossRefGoogle Scholar
  132. 132.
    Demeterco, C., Beattie, G. M., Dib, S. A., Lopez, A. D., & Hayek, A. (2000). A role for activin A and betacellulin in human fetal pancreatic cell differentiation and growth. Journal of Clinical Endocrinology and Metabolism, 85(10), 3892–3897.PubMedCrossRefGoogle Scholar
  133. 133.
    Cho, Y. M., Lim, J. M., Yoo, D. H., Kim, J. H., Chung, S. S., Park, S. G., et al. (2008). Betacellulin and nicotinamide sustain PDX1 expression and induce pancreatic beta-cell differentiation in human embryonic stem cells. Biochemical and Biophysical Research Communications, 366(1), 129–134.PubMedCrossRefGoogle Scholar
  134. 134.
    Bhushan, A., Itoh, N., Kato, S., Thiery, J. P., Czernichow, P., Bellusci, S., et al. (2001). Fgf10 is essential for maintaining the proliferative capacity of epithelial progenitor cells during early pancreatic organogenesis. Development, 128(24), 5109–5117.PubMedGoogle Scholar
  135. 135.
    Norgaard, G. A., Jensen, J. N., & Jensen, J. (2003). FGF10 signaling maintains the pancreatic progenitor cell state revealing a novel role of Notch in organ development. Developments in Biologicals, 264(2), 323–338.CrossRefGoogle Scholar
  136. 136.
    Hart, A., Papadopoulou, S., & Edlund, H. (2003). Fgf10 maintains notch activation, stimulates proliferation, and blocks differentiation of pancreatic epithelial cells. Developmental Dynamics, 228(2), 185–193.PubMedCrossRefGoogle Scholar
  137. 137.
    Ye, F., Duvillie, B., & Scharfmann, R. (2005). Fibroblast growth factors 7 and 10 are expressed in the human embryonic pancreatic mesenchyme and promote the proliferation of embryonic pancreatic epithelial cells. Diabetologia, 48(2), 277–281.PubMedCrossRefGoogle Scholar
  138. 138.
    Movassat, J., Beattie, G. M., Lopez, A. D., Portha, B., & Hayek, A. (2003). Keratinocyte growth factor and beta-cell differentiation in human fetal pancreatic endocrine precursor cells. Diabetologia, 46(6), 822–829.PubMedCrossRefGoogle Scholar
  139. 139.
    Miralles, F., Czernichow, P., Ozaki, K., Itoh, N., & Scharfmann, R. (1999). Signaling through fibroblast growth factor receptor 2b plays a key role in the development of the exocrine pancreas. Proceedings of the National Academy of Sciences of the United States of America, 96(11), 6267–6272.PubMedCrossRefGoogle Scholar
  140. 140.
    Skoudy, A., Rovira, M., Savatier, P., Martin, F., Leon-Quinto, T., Soria, B., et al. (2004). Transforming growth factor (TGF)beta, fibroblast growth factor (FGF) and retinoid signalling pathways promote pancreatic exocrine gene expression in mouse embryonic stem cells. Biochemical Journal, 379(Pt 3), 749–756.PubMedCrossRefGoogle Scholar
  141. 141.
    Garcia-Ocana, A., Vasavada, R. C., Cebrian, A., Reddy, V., Takane, K. K., Lopez-Talavera, J. C., et al. (2001). Transgenic overexpression of hepatocyte growth factor in the beta-cell markedly improves islet function and islet transplant outcomes in mice. Diabetes, 50(12), 2752–2762.PubMedCrossRefGoogle Scholar
  142. 142.
    Otonkoski, T., Cirulli, V., Beattie, M., Mally, M. I., Soto, G., Rubin, J. S., et al. (1996). A role for hepatocyte growth factor/scatter factor in fetal mesenchyme-induced pancreatic beta-cell growth. Endocrinology, 137(7), 3131–3139.PubMedCrossRefGoogle Scholar
  143. 143.
    Lammert, E., Cleaver, O., & Melton, D. (2003). Role of endothelial cells in early pancreas and liver development. Mechanisms of Development, 120(1), 59–64.PubMedCrossRefGoogle Scholar
  144. 144.
    Lammert, E., Cleaver, O., & Melton, D. (2001). Induction of pancreatic differentiation by signals from blood vessels. Science, 294(5542), 564–567.PubMedCrossRefGoogle Scholar
  145. 145.
    Nikolova, G., Jabs, N., Konstantinova, I., Domogatskaya, A., Tryggvason, K., Sorokin, L., et al. (2006). The vascular basement membrane: A niche for insulin gene expression and Beta cell proliferation. Developmental Cell, 10(3), 397–405.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media 2009

Authors and Affiliations

  • Sabine Sulzbacher
    • 1
  • Insa S. Schroeder
    • 1
    • 2
  • Thuy T. Truong
    • 1
    • 3
  • Anna M. Wobus
    • 1
  1. 1.Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany
  2. 2.Department of Anatomy and Cell Biology, Faculty of MedicineUniversity of Halle-WittenbergHalle (Saale)Germany
  3. 3.Jules Stein Eye InstituteUniversity of CaliforniaLos AngelesUSA

Personalised recommendations