Stem cell Researches in Brazil: Present and Future Challenges

  • Mayana ZatzEmail author


A bill allowing researches with human embryonic stem cells has been approved by the Brazilian Congress, originally in 2005 and definitively by the Supreme Court in 2008. However, several years before, investigations in Brazil with adult stem cells in vitro in animal models as well as clinical trials, were started and are currently underway. Here, we will summarize the main findings and the challenges of going from bench to bed, focusing on heart, diabetes, cancer, craniofacial, and neuromuscular disorders. We also call attention to the importance of publishing negative results on experimental trials in scientific journals and websites. They are of great value to investigators in the field and may avoid the repeating of unsuccessful experiments. In addition, they could be referred to patients seeking information, aiming to protect them against financial and psychological harm.


Embryonic stem cells Brazilian legislation Adult stem-cells Heart conditions Craniofacial and neuromuscular disorders 


  1. 1.
    Perin, E. C., Dohmann, H. F., Borojevic, R., et al. (2004). Improved exercise capacity and ischemia 6 and 12 months after transendocardial injection of autologous bone marrow mononuclear cells for ischemic cardiomyopathy. Circulation, 110(11 Suppl 1), II213–II218. doi: 10.1161/01.CIR.0000138398.77550.62.PubMedGoogle Scholar
  2. 2.
    Dohmann, H. F., Perin, E. C., Takiya, C. M., et al. (2005). Transendocardial autologous bone marrow mononuclear cell injection in ischemic heart failure: postmortem natomicopathologic and immunohistochemical findings. Circulation, 112(4), 521–526. doi: 10.1161/CIRCULATIONAHA.104.499178.PubMedCrossRefGoogle Scholar
  3. 3.
    Soares, M. B. P., Lima, R. S., Rocha, L. L., et al. (2004). Transplanted bone marrow cells repair heart tissue and reduce myocarditis in chronic chagasic mice. American Journal of Pathology, 164(2), 441–447.PubMedGoogle Scholar
  4. 4.
    Ribeiro, K. C., Mattos, E. C., Werneck-de-castro, J. P., et al. (2006). Ectopic ossification in the scar tissue of rats with myocardial infarction. Cell Transplant, 15(5), 389–397. doi: 10.3727/000000006783981864.PubMedCrossRefGoogle Scholar
  5. 5.
    de Macedo Braga, L. M., Lacchini, S., et al. (2008). In situ delivery of bone marrow cells and mesenchymal stem cells improves cardiovascular function in hypertensive rats submitted to myocardial infarction. Journal of Biomedical Science, 15(3), 365–374. doi: 10.1007/s11373-008-9237-z.PubMedCrossRefGoogle Scholar
  6. 6.
    Braga, L. M., Rosa, K., Rodrigues, B., et al. (2008). Systemic delivery of adult stem cells improves cardiac function in spontaneously hypertensive rats. Clinical and Experimental Pharmacology and Physiology, 35(2), 105–106.Google Scholar
  7. 7.
    Sussman, M. A., & Murry, C. E. (2008). Bones of contention: marrow-derived cells in myocardial regeneration. Journal of Molecular and Cellular Cardiology, 44(6), 950–953. doi: 10.1016/j.yjmcc.2008.03.007.PubMedCrossRefGoogle Scholar
  8. 8.
    Martin-Rendon, E., Brunskill, S. J., Hyde, C. J., Stanworth, S. J., Mathur, A., & Watt, S. M. (2008). Autologous bone marrow stem cells to treat acute myocardial infarction: a systematic review. European Heart Journal, 29(15), 1807–1818. doi: 10.1093/eurheartj/ehn220.PubMedCrossRefGoogle Scholar
  9. 9.
    Tura, B. R., Martino, H. F., Gowdak, L. H., et al. (2007). Multicenter randomized trial of cell therapy in cardiopathies - MiHeart Study. Trials, 8, 2. doi: 10.1186/1745-6215-8-2.PubMedCrossRefGoogle Scholar
  10. 10.
    Quintanilha, L. F., Mannheimer, E. G., Carvalho, A. B., et al. (2008). Bone marrow cell transplant does not prevent or reverse murine liver cirrhosis. Cell Transplant, 17(8), 943–953. doi: 10.3727/096368908786576453.PubMedCrossRefGoogle Scholar
  11. 11.
    Carvalho, A. B., Quintanilha, L. F., Dias, J. V., et al. (2008). Bone marrow multipotent mesenchymal stromal cells do not reduce fibrosis or improve function in a rat model of severe chronic liver injury. Stem Cells, 26(5), 1307–1314. doi: 10.1634/stemcells.2007-0941.PubMedCrossRefGoogle Scholar
  12. 12.
    Voltarelli, J. C., Couri, C. E., Stracieri, A. B., et al. (2007). Autologous nonmyeloablative hematopoietic stem cell transplantation in newly diagnosed type 1 diabetes mellitus. JAMA, 297(14), 1599–1600. doi: 10.1001/jama.297.14.1568.CrossRefGoogle Scholar
  13. 13.
    Skyler, J. S. (2007). Cellular therapy for type 1 diabetes: has the time come? JAMA, 297(14), 1599–1600. doi: 10.1001/jama.297.14.1599.PubMedCrossRefGoogle Scholar
  14. 14.
    Ross, L. F., & Philipson, L. H. (2007). Ethics of hematopoietic stem cell transplantation in type 1 diabetes mellitus. JAMA, 298(3), 285. doi: 10.1001/jama.298.3.285-a.PubMedCrossRefGoogle Scholar
  15. 15.
    Voltarelli, J. C., Couri, C. E., Stracieri, A. B., et al. (2008). Autologous hematopoietic stem cell transplantation for type 1 diabetes. Annals of the New York Academy of Sciences, 1150, 220–229.PubMedCrossRefGoogle Scholar
  16. 16.
    Panepucci, R. A., Calado, R. T., Rocha, V., Proto-Siqueira, R., Silva Jr., W. A., & Zago, M. A. (2007). Higher expression of transcription targets and components of the nuclear factor-kappaB pathway is a distinctive feature of umbilical cord blood CD34+ precursors. Stem Cells, 25(1), 189–196. doi: 10.1634/stemcells.2006-0328.PubMedCrossRefGoogle Scholar
  17. 17.
    Okamoto, O. K., Oba-Shinjo, S. M., Lopes, L., & Nagahashi Marie, S. K. (2007). Expression of HOXC9 and E2F2 are up-regulated in CD133(+) cells isolated from human astrocytomas and associate with transformation of human astrocytes. Biochimica et Biophysica Acta, 1769(7–8), 437–442.PubMedGoogle Scholar
  18. 18.
    Okamoto, O. K., Carvalho, A. C., Marti, L. C., Vêncio, R. Z., & Moreira-Filho, C. A. (2007). Common molecular pathways involved in human CD133+/CD34+ progenitor cell expansion and cancer. Cancer Cell International, 7, 11. doi: 10.1186/1475-2867-7-11.PubMedCrossRefGoogle Scholar
  19. 19.
    Fanganiello, R. D., Sertié, A. L., Reis, E. M., et al. (2007). Apert p.Ser252Trp mutation in FGFR2 alters osteogenic potential and gene expression of cranial periosteal cells. Molecular Medicine, 13(7–8), 422–442. doi: 10.2119/2007-00027.Fanganiello.PubMedGoogle Scholar
  20. 20.
    de Mendonça Costa, A., Bueno, D. F., et al. (2008). Reconstruction of large cranial defects in nonimmunosuppressed experimental design with human dental pulp stem cells. Journal of Craniofacial Surgery, 19(1), 204–210.PubMedGoogle Scholar
  21. 21.
    Kerkis, I., Kerkis, A., Dozortsev, D., et al. (2006). Isolation and characterization of a population of immature dental pulp stem cells expressing OCT-4 and other embryonic stem cell markers. Cells Tissues Organs, 184(3–4), 105–116. doi: 10.1159/000099617.PubMedCrossRefGoogle Scholar
  22. 22.
    Bueno, D. F., Kerkis, I., Costa, A. M., et al. New source of muscle-derived stem cells with potential for alveolar bone reconstruction in cleft lip and/or palate patients. Tissue Eng Part A. 2008 Sep 24.Google Scholar
  23. 23.
    Secco, M., Zucconi, E., Vieira, N. M., et al. (2008). Multipotent stem cells from umbilical cord: cord is richer than blood!. Stem Cells, 26(1), 146–150. doi: 10.1634/stemcells.2007-0381.PubMedCrossRefGoogle Scholar
  24. 24.
    Secco, M., Zucconi, E., Vieira, N. M., et al. (2008). Mesenchymal stem cells from umbilical cord: do not discard the cord!. Neuromuscular Disorders, 18(1), 17. doi: 10.1016/j.nmd.2007.11.003.PubMedCrossRefGoogle Scholar
  25. 25.
    Di Rocco, G., Lachininoto, M. G., Tritarelli, A., et al. (2006). Myogenic potential of adipose-tissue-derived cells. Journal of Cell Science, 119, 2945–2952. doi: 10.1242/jcs.03029.PubMedCrossRefGoogle Scholar
  26. 26.
    Rodriguez, A. M., Pisani, D., Dechesne, C. A., et al. (2005). Transplantation of a multipotent cell population from human adipose tissue induces dystrophin expression in the immunocompetent mdx mouse. Journal of Experimental Medicine, 201, 1397–1405. doi: 10.1084/jem.20042224.PubMedCrossRefGoogle Scholar
  27. 27.
    Vieira, N. M., Brandalise, V., Zucconi, E., et al. (2008). Human multipotent adipose-derived stem cells restore dystrophin expression of Duchenne skeletal-muscle cells in vitro. Biology of the Cell, 100(4), 231–241. doi: 10.1042/BC20070102.PubMedCrossRefGoogle Scholar
  28. 28.
    Jazedje, T., Secco, M., Vieira, N., Zucconi, E., Gollop, T., Vainzof, M., et al. Stem cells from umbilical cord blood do have myogenic potential, with and without differentiation induction in vitro. J Transl Med. In press.Google Scholar
  29. 29.
    Nunes, V. A., Cavaçana, N., Canovas, M., Strauss, B. E., & Zatz, M. (2007). Stem cells from umbilical cord blood differentiate into myotubes and express dystrophin in vitro only after exposure to in vivo muscle environment. Biology of the Cell, 99(4), 185–196. doi: 10.1042/BC20060075.PubMedCrossRefGoogle Scholar
  30. 30.
    Kerkis, I., Ambrosio, C. E., Kerkis, A., et al. (2008). Early transplantation of human immature dental pulp stem cells from baby teeth to golden retriever muscular dystrophy (GRMD) dogs: Local or systemic? Journal of Translational Medicine, 6, 35. doi: 10.1186/1479-5876-6-35.CrossRefGoogle Scholar
  31. 31.
    Vieira, N. M., Bueno Jr., C. R., Brandalise, V., et al. (2008). SJL dystrophic mice express a significant amount of human muscle proteins following systemic delivery of human adipose-derived stromal cells without immunosuppression. Stem Cells, 26(9), 2391. doi: 10.1634/stemcells.2008-0043.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media 2009

Authors and Affiliations

  1. 1.Human Genome Research Center, Biosciences InstituteUniversity of São PauloSão PauloBrazil

Personalised recommendations