Stem Cell Reviews and Reports

, Volume 5, Issue 1, pp 36–50 | Cite as

Genomic Profiling of Mesenchymal Stem Cells

  • Danijela Menicanin
  • P. Mark Bartold
  • Andrew C. W. Zannettino
  • Stan GronthosEmail author


Mesenchymal stem/stromal cells (MSC) are an accessible source of precursor cells that can be expanded in vitro and used for tissue regeneration for different clinical applications. The advent of microarray technology has enabled the monitoring of individual and global gene expression patterns across multiple cell populations. Thus, genomic profiling has fundamentally changed our capacity to characterize MSCs, identify potential biomarkers and determined key molecules regulating biological processes involved in stem cell survival, growth and development. Numerous studies have now examined the genomic profiles of MSCs derived from different tissues that exhibit varying levels of differentiation and proliferation potentials. The knowledge gained from these studies will help improve our understanding of the cellular signalling pathways involved in MSC growth, survival and differentiation, and may aid in the development of strategies to improve the tissue regeneration potential of MSCs for different clinical indications. The present review summarizes studies characterizing the gene expression profile of MSCs.


Mesenchymal stem cell Bone marrow stromal cell Genomic profiling cDNA microarray analysis 


  1. 1.
    Friedenstein, A. J., Piatetzky II, S., & Petrakova, K. V. (1966). Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol, 16, 381–390.PubMedGoogle Scholar
  2. 2.
    Friedenstein, A. J., Gorskaja, J. F., & Kulagina, N. N. (1976). Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Experimental hematology, 4, 267–274.PubMedGoogle Scholar
  3. 3.
    Horwitz, E. M., Le Blanc, K., Dominici, M., Mueller, I., Slaper-Cortenbach, I., Marini, F. C., et al. (2005). Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy, 7, 393–395. doi: 10.1080/14653240500319234.PubMedGoogle Scholar
  4. 4.
    Gronthos, S., Zannettino, A. C., Hay, S. J., Shi, S., Graves, S. E., Kortesidis, A., et al. (2003). Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. Journal of cell science, 116, 1827–1835. doi: 10.1242/jcs.00369.PubMedGoogle Scholar
  5. 5.
    Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284, 143–147. doi: 10.1126/science.284.5411.143.PubMedGoogle Scholar
  6. 6.
    Smith, J. R., Pochampally, R., Perry, A., Hsu, S. C., & Prockop, D. J. (2004). Isolation of a highly clonogenic and multipotential subfraction of adult stem cells from bone marrow stroma. Stem cells (Dayton, Ohio), 22, 823–831. doi: 10.1634/stemcells.22-5-823.Google Scholar
  7. 7.
    Horwitz, E. M., Prockop, D. J., Fitzpatrick, L. A., Koo, W. W., Gordon, P. L., Neel, M., et al. (1999). Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nature medicine, 5, 309–313. doi: 10.1038/6529.PubMedGoogle Scholar
  8. 8.
    Pereira, R. F., Halford, K. W., O’Hara, M. D., Leeper, D. B., Sokolov, B. P., Pollard, M. D., et al. (1995). Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone, cartilage, and lung in irradiated mice. Proc Natl Acad Sci USA, 92, 4857–4861. doi: 10.1073/pnas.92.11.4857.PubMedGoogle Scholar
  9. 9.
    Jiang, Y., Jahagirdar, B. N., Reinhardt, R. L., Schwartz, R. E., Keene, C. D., Ortiz-Gonzalez, X. R., et al. (2002). Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 418, 41–49. doi: 10.1038/nature00870.PubMedGoogle Scholar
  10. 10.
    Woodbury, D., Schwarz, E. J., Prockop, D. J., & Black, I. B. (2000). Adult rat and human bone marrow stromal cells differentiate into neurons. Journal of neuroscience research, 61, 364–370. doi: 10.1002/1097-4547(20000815)61:4<364::AID-JNR2>3.0.CO;2-C.PubMedGoogle Scholar
  11. 11.
    Petersen, B. E., Bowen, W. C., Patrene, K. D., Mars, W. M., Sullivan, A. K., Murase, N., et al. (1999). Bone marrow as a potential source of hepatic oval cells. Science, 284, 1168–1170. doi: 10.1126/science.284.5417.1168.PubMedGoogle Scholar
  12. 12.
    Zannettino, A. C., Paton, S., Arthur, A., Khor, F., Itescu, S., Gimble, J. M., et al. (2008). Multipotential human adipose-derived stromal stem cells exhibit a perivascular phenotype in vitro and in vivo. Journal of cellular physiology, 214, 413–421. doi: 10.1002/jcp.21210.PubMedGoogle Scholar
  13. 13.
    Kuznetsov, S. A., Mankani, M. H., Gronthos, S., Satomura, K., Bianco, P., & Robey, P. G. (2001). Circulating skeletal stem cells. The Journal of cell biology, 153, 1133–1140. doi: 10.1083/jcb.153.5.1133.PubMedGoogle Scholar
  14. 14.
    Seo, B. M., Miura, M., Gronthos, S., Bartold, P. M., Batouli, S., Brahim, J., et al. (2004). Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet, 364, 149–155. doi: 10.1016/S0140-6736(04)16627-0.PubMedGoogle Scholar
  15. 15.
    Gronthos, S., Mankani, M., Brahim, J., Robey, P. G., & Shi, S. (2000). Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA, 97, 13625–13630. doi: 10.1073/pnas.240309797.PubMedGoogle Scholar
  16. 16.
    Erices, A., Conget, P., & Minguell, J. J. (2000). Mesenchymal progenitor cells in human umbilical cord blood. British journal of haematology, 109, 235–242. doi: 10.1046/j.1365-2141.2000.01986.x.PubMedGoogle Scholar
  17. 17.
    in ’t Anker, P. S., Noort, W. A., Scherjon, S. A., Kleijburg-van der Keur, C., Kruisselbrink, A. B., van Bezooijen, R. L., et al. (2003). Mesenchymal stem cells in human second-trimester bone marrow, liver, lung, and spleen exhibit a similar immunophenotype but a heterogeneous multilineage differentiation potential. Haematologica, 88, 845–852.PubMedGoogle Scholar
  18. 18.
    In ’t Anker, P. S., Scherjon, S. A., Kleijburg-van der Keur, C., de Groot-Swings, G. M., Claas, F. H., Fibbe, W. E., et al. (2004). Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem cells (Dayton, Ohio), 22, 1338–1345.Google Scholar
  19. 19.
    Young, H. E., Steele, T. A., Bray, R. A., Hudson, J., Floyd, J. A., Hawkins, K., et al. (2001). Human reserve pluripotent mesenchymal stem cells are present in the connective tissues of skeletal muscle and dermis derived from fetal, adult, and geriatric donors. Anat Rec, 264, 51–62. doi: 10.1002/ar.1128.PubMedGoogle Scholar
  20. 20.
    Nakashima, M., & Reddi, A. H. (2003). The application of bone morphogenetic proteins to dental tissue engineering. Nature biotechnology, 21, 1025–1032. doi: 10.1038/nbt864.PubMedGoogle Scholar
  21. 21.
    Nakashima, M. (2005). Bone morphogenetic proteins in dentin regeneration for potential use in endodontic therapy. Cytokine & growth factor reviews, 16, 369–376. doi: 10.1016/j.cytogfr.2005.02.011.Google Scholar
  22. 22.
    Srisuwan, T., Tilkorn, D. J., Wilson, J. L., Morrison, W. A., Messer, H. M., Thompson, E. W., et al. (2006). Molecular aspects of tissue engineering in the dental field. Periodontology 2000, 41, 88–108. doi: 10.1111/j.1600-0757.2006.00176.x.PubMedGoogle Scholar
  23. 23.
    Wagner, W., Wein, F., Seckinger, A., Frankhauser, M., Wirkner, U., Krause, U., et al. (2005). Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Experimental hematology, 33, 1402–1416. doi: 10.1016/j.exphem.2005.07.003.PubMedGoogle Scholar
  24. 24.
    Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., et al. (2001). Initial sequencing and analysis of the human genome. Nature, 409, 860–921. doi: 10.1038/35057062.PubMedGoogle Scholar
  25. 25.
    Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G., et al. (2001). The sequence of the human genome. Science, 291, 1304–1351. doi: 10.1126/science.1058040.PubMedGoogle Scholar
  26. 26.
    Wright, G. W., & Simon, R. M. (2003). A random variance model for detection of differential gene expression in small microarray experiments. Bioinformatics (Oxford, England), 19, 2448–2455. doi: 10.1093/bioinformatics/btg345.Google Scholar
  27. 27.
    Kallioniemi, O. P., Wagner, U., Kononen, J., & Sauter, G. (2001). Tissue microarray technology for high-throughput molecular profiling of cancer. Human molecular genetics, 10, 657–662. doi: 10.1093/hmg/10.7.657.PubMedGoogle Scholar
  28. 28.
    Han, E., & Hilsenbeck, S. G. (2001). Array-based gene expression profiling to study aging. Mechanisms of ageing and development, 122, 999–1018. doi: 10.1016/S0047-6374(01)00215-9.PubMedGoogle Scholar
  29. 29.
    Takikita, M., Chung, J. Y., & Hewitt, S. M. (2007). Tissue microarrays enabling high-throughput molecular pathology. Current opinion in biotechnology, 18, 318–325. doi: 10.1016/j.copbio.2007.05.007.PubMedGoogle Scholar
  30. 30.
    Simon, R. (2008). Microarray-based expression profiling and informatics. Current opinion in biotechnology, 19, 26–29. doi: 10.1016/j.copbio.2007.10.008.PubMedGoogle Scholar
  31. 31.
    Zaidi, M. (2007). Skeletal remodeling in health and disease. Nature medicine, 13, 791–801. doi: 10.1038/nm1593.PubMedGoogle Scholar
  32. 32.
    Lian, J. B., Stein, G. S., Javed, A., van Wijnen, A. J., Stein, J. L., Montecino, M., et al. (2006). Networks and hubs for the transcriptional control of osteoblastogenesis. Reviews in endocrine & metabolic disorders, 7, 1–16. doi: 10.1007/s11154-006-9001-5.Google Scholar
  33. 33.
    Romero-Prado, M., Blazquez, C., Rodriguez-Navas, C., Munoz, J., Guerrero, I., Delgado-Baeza, E., et al. (2006). Functional characterization of human mesenchymal stem cells that maintain osteochondral fates. Journal of cellular biochemistry, 98, 1457–1470. doi: 10.1002/jcb.20778.PubMedGoogle Scholar
  34. 34.
    Komori, T. (2006). Regulation of osteoblast differentiation by transcription factors. Journal of cellular biochemistry, 99, 1233–1239. doi: 10.1002/jcb.20958.PubMedGoogle Scholar
  35. 35.
    Kulterer, B., Friedl, G., Jandrositz, A., Sanchez-Cabo, F., Prokesch, A., Paar, C., et al. (2007). Gene expression profiling of human mesenchymal stem cells derived from bone marrow during expansion and osteoblast differentiation. BMC genomics, 8, 70. doi: 10.1186/1471-2164-8-70.PubMedGoogle Scholar
  36. 36.
    Ruzinova, M. B., & Benezra, R. (2003). Id proteins in development, cell cycle and cancer. Trends in cell biology, 13, 410–418. doi: 10.1016/S0962-8924(03)00147-8.PubMedGoogle Scholar
  37. 37.
    Norton, J. D. (2000). ID helix-loop-helix proteins in cell growth, differentiation and tumorigenesis. Journal of cell science, 113(Pt 22), 3897–3905.PubMedGoogle Scholar
  38. 38.
    Benezra, R., Davis, R. L., Lockshon, D., Turner, D. L., & Weintraub, H. (1990). The protein Id: a negative regulator of helix-loop-helix DNA binding proteins. Cell, 61, 49–59. doi: 10.1016/0092-8674(90)90214-Y.PubMedGoogle Scholar
  39. 39.
    Pagliuca, A., Cannada-Bartoli, P., & Lania, L. (1998). A role for Sp and helix-loop-helix transcription factors in the regulation of the human Id4 gene promoter activity. The Journal of biological chemistry, 273, 7668–7674. doi: 10.1074/jbc.273.13.7668.PubMedGoogle Scholar
  40. 40.
    Furushima, K., Shimo-Onoda, K., Maeda, S., Nobukuni, T., Ikari, K., Koga, H., et al. (2002). Large-scale screening for candidate genes of ossification of the posterior longitudinal ligament of the spine. Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research, 17, 128–137. doi: 10.1359/jbmr.2002.17.1.128.Google Scholar
  41. 41.
    Petersen, C. M., Nielsen, M. S., Nykjaer, A., Jacobsen, L., Tommerup, N., Rasmussen, H. H., et al. (1997). Molecular identification of a novel candidate sorting receptor purified from human brain by receptor-associated protein affinity chromatography. The Journal of biological chemistry, 272, 3599–3605. doi: 10.1074/jbc.272.6.3599.PubMedGoogle Scholar
  42. 42.
    Nohe, A., Hassel, S., Ehrlich, M., Neubauer, F., Sebald, W., Henis, Y. I., et al. (2002). The mode of bone morphogenetic protein (BMP) receptor oligomerization determines different BMP-2 signaling pathways. The Journal of biological chemistry, 277, 5330–5338. doi: 10.1074/jbc.M102750200.PubMedGoogle Scholar
  43. 43.
    Maeda, S., Nobukuni, T., Shimo-Onoda, K., Hayashi, K., Yone, K., Komiya, S., et al. (2002). Sortilin is upregulated during osteoblastic differentiation of mesenchymal stem cells and promotes extracellular matrix mineralization. Journal of cellular physiology, 193, 73–79. doi: 10.1002/jcp.10151.PubMedGoogle Scholar
  44. 44.
    Pochampally, R. R., Ylostalo, J., Penfornis, P., Matz, R. R., Smith, J. R., & Prockop, D. J. (2007). Histamine receptor H1 and dermatopontin: new downstream targets of the vitamin D receptor. Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research, 22, 1338–1349. doi: 10.1359/jbmr.070605.Google Scholar
  45. 45.
    Christakos, S., Dhawan, P., Liu, Y., Peng, X., & Porta, A. (2003). New insights into the mechanisms of vitamin D action. Journal of cellular biochemistry, 88, 695–705. doi: 10.1002/jcb.10423.PubMedGoogle Scholar
  46. 46.
    Weiss, L. (1976). The hematopoietic microenvironment of the bone marrow: an ultrastructural study of the stroma in rats. Anat Rec, 186, 161–184. doi: 10.1002/ar.1091860204.PubMedGoogle Scholar
  47. 47.
    Lichtman, M. A. (1981). The ultrastructure of the hemopoietic environment of the marrow: a review. Experimental hematology, 9, 391–410.PubMedGoogle Scholar
  48. 48.
    Tavassoli, M., & Friedenstein, A. (1983). Hemopoietic stromal microenvironment. American journal of hematology, 15, 195–203. doi: 10.1002/ajh.2830150211.PubMedGoogle Scholar
  49. 49.
    Bianco, P., & Gehron Robey, P. (2000). Marrow stromal stem cells. The Journal of clinical investigation, 105, 1663–1668. doi: 10.1172/JCI10413.PubMedGoogle Scholar
  50. 50.
    Hung, S. C., Chang, C. F., Ma, H. L., Chen, T. H., & Low-Tone Ho, L. (2004). Gene expression profiles of early adipogenesis in human mesenchymal stem cells. Gene, 340, 141–150. doi: 10.1016/j.gene.2004.06.028.PubMedGoogle Scholar
  51. 51.
    Shugart, E. C., Levenson, A. S., Constance, C. M., & Umek, R. M. (1995). Differential expression of gas and gadd genes at distinct growth arrest points during adipocyte development. Cell Growth Differ, 6, 1541–1547.PubMedGoogle Scholar
  52. 52.
    Alexander, D. L., Ganem, L. G., Fernandez-Salguero, P., Gonzalez, F., & Jefcoate, C. R. (1998). Aryl-hydrocarbon receptor is an inhibitory regulator of lipid synthesis and of commitment to adipogenesis. Journal of cell science, 111(Pt 22), 3311–3322.PubMedGoogle Scholar
  53. 53.
    Liu, Z., Chang, G. Q., & Leibowitz, S. F. (2001). Apolipoprotein D interacts with the long-form leptin receptor: a hypothalamic function in the control of energy homeostasis. The FASEB journal: official publication of the Federation of American Societies for Experimental Biology, 15, 1329–1331. doi: 10.1096/fj.00-0223com.Google Scholar
  54. 54.
    White, J. M. (2003). ADAMs: modulators of cell-cell and cell-matrix interactions. Current opinion in cell biology, 15, 598–606. doi: 10.1016/ Scholar
  55. 55.
    Sandy, J. D., Westling, J., Kenagy, R. D., Iruela-Arispe, M. L., Verscharen, C., Rodriguez-Mazaneque, J. C., et al. (2001). Versican V1 proteolysis in human aorta in vivo occurs at the Glu441-Ala442 bond, a site that is cleaved by recombinant ADAMTS-1 and ADAMTS-4. The Journal of biological chemistry , 276, 13372–13378. doi: 10.1074/jbc.M009737200.PubMedGoogle Scholar
  56. 56.
    Soukas, A., Socci, N. D., Saatkamp, B. D., Novelli, S., & Friedman, J. M. (2001). Distinct transcriptional profiles of adipogenesis in vivo and in vitro. The Journal of biological chemistry, 276, 34167–34174. doi: 10.1074/jbc.M104421200.PubMedGoogle Scholar
  57. 57.
    Guo, X., & Liao, K. (2000). Analysis of gene expression profile during 3T3-L1 preadipocyte differentiation. Gene, 251, 45–53. doi: 10.1016/S0378-1119(00)00192-X.PubMedGoogle Scholar
  58. 58.
    Ji, X., Chen, D., Xu, C., Harris, S. E., Mundy, G. R., & Yoneda, T. (2000). Patterns of gene expression associated with BMP-2-induced osteoblast and adipocyte differentiation of mesenchymal progenitor cell 3T3-F442A. Journal of bone and mineral metabolism, 18, 132–139. doi: 10.1007/s007740050103.PubMedGoogle Scholar
  59. 59.
    Lane, M. D., Tang, Q. Q., & Jiang, M. S. (1999). Role of the CCAAT enhancer binding proteins (C/EBPs) in adipocyte differentiation. Biochemical and biophysical research communications, 266, 677–683. doi: 10.1006/bbrc.1999.1885.PubMedGoogle Scholar
  60. 60.
    Morrison, R. F., & Farmer, S. R. (1999). Insights into the transcriptional control of adipocyte differentiation. J Cell Biochem. Suppl., 32–33, 59–67.Google Scholar
  61. 61.
    Nakamura, T., Shiojima, S., Hirai, Y., Iwama, T., Tsuruzoe, N., Hirasawa, A., et al. (2003). Temporal gene expression changes during adipogenesis in human mesenchymal stem cells. Biochemical and biophysical research communications, 303, 306–312. doi: 10.1016/S0006-291X(03)00325-5.PubMedGoogle Scholar
  62. 62.
    Sekiya, I., Larson, B. L., Vuoristo, J. T., Cui, J. G., & Prockop, D. J. (2004). Adipogenic differentiation of human adult stem cells from bone marrow stroma (MSCs). Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research, 19, 256–264. doi: 10.1359/JBMR.0301220.Google Scholar
  63. 63.
    Fontemaggi, G., Gurtner, A., Strano, S., Higashi, Y., Sacchi, A., Piaggio, G., et al. (2001). The transcriptional repressor ZEB regulates p73 expression at the crossroad between proliferation and differentiation. Molecular and cellular biology, 21, 8461–8470. doi: 10.1128/MCB.21.24.8461-8470.2001.PubMedGoogle Scholar
  64. 64.
    Watanabe, Y., Kawakami, K., Hirayama, Y., & Nagano, K. (1993). Transcription factors positively and negatively regulating the Na,K-ATPase alpha 1 subunit gene. J Biochem, 114, 849–855.PubMedGoogle Scholar
  65. 65.
    Locklin, R. M., Riggs, B. L., Hicok, K. C., Horton, H. F., Byrne, M. C., & Khosla, S. (2001). Assessment of gene regulation by bone morphogenetic protein 2 in human marrow stromal cells using gene array technology. Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research, 16, 2192–2204. doi: 10.1359/jbmr.2001.16.12.2192.Google Scholar
  66. 66.
    Schilling, T., Noth, U., Klein-Hitpass, L., Jakob, F., & Schutze, N. (2007). Plasticity in adipogenesis and osteogenesis of human mesenchymal stem cells. Molecular and cellular endocrinology, 271, 1–17. doi: 10.1016/j.mce.2007.03.004.PubMedGoogle Scholar
  67. 67.
    Beresford, J. N., Bennett, J. H., Devlin, C., Leboy, P. S., & Owen, M. E. (1992). Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures. Journal of cell science, 102(Pt 2), 341–351.PubMedGoogle Scholar
  68. 68.
    Koo, K. H., Dussault, R., Kaplan, P., Kim, R., Ahn, I. O., Christopher, J., et al. (1998). Age-related marrow conversion in the proximal metaphysis of the femur: evaluation with T1-weighted MR imaging. Radiology, 206, 745–748.PubMedGoogle Scholar
  69. 69.
    Carlberg, A. L., Pucci, B., Rallapalli, R., Tuan, R. S., & Hall, D. J. (2001). Efficient chondrogenic differentiation of mesenchymal cells in micromass culture by retroviral gene transfer of BMP-2. Differentiation; research in biological diversity, 67, 128–138. doi: 10.1046/j.1432-0436.2001.670405.x.PubMedGoogle Scholar
  70. 70.
    Krampera, M., Pizzolo, G., Aprili, G., & Franchini, M. (2006). Mesenchymal stem cells for bone, cartilage, tendon and skeletal muscle repair. Bone, 39, 678–683. doi: 10.1016/j.bone.2006.04.020.PubMedGoogle Scholar
  71. 71.
    Djouad, F., Delorme, B., Maurice, M., Bony, C., Apparailly, F., Louis-Plence, P., et al. (2007). Microenvironmental changes during differentiation of mesenchymal stem cells towards chondrocytes. Arthritis research & therapy, 9, R33. doi: 10.1186/ar2153.Google Scholar
  72. 72.
    Goessler, U. R., Bieback, K., Bugert, P., Heller, T., Sadick, H., Hormann, K., et al. (2006). In vitro analysis of integrin expression during chondrogenic differentiation of mesenchymal stem cells and chondrocytes upon dedifferentiation in cell culture. International journal of molecular medicine, 17, 301–307.PubMedGoogle Scholar
  73. 73.
    Goessler, U. R., Bugert, P., Bieback, K., Huber, K., Fleischer, L. I., Hormann, K., et al. (2005). Differential modulation of integrin expression in chondrocytes during expansion for tissue engineering. In vivo (Athens, Greece), 19, 501–507.Google Scholar
  74. 74.
    Loeser, R. F., Carlson, C. S., & McGee, M. P. (1995). Expression of beta 1 integrins by cultured articular chondrocytes and in osteoarthritic cartilage. Experimental cell research, 217, 248–257. doi: 10.1006/excr.1995.1084.PubMedGoogle Scholar
  75. 75.
    Gronthos, S., Simmons, P. J., Graves, S. E., & Robey, P. G. (2001). Integrin-mediated interactions between human bone marrow stromal precursor cells and the extracellular matrix. Bone, 28, 174–181. doi: 10.1016/S8756-3282(00)00424-5.PubMedGoogle Scholar
  76. 76.
    Makihira, S., Yan, W., Murakami, H., Furukawa, M., Kawai, T., Nikawa, H., et al. (2003). Thyroid hormone enhances aggrecanase-2/ADAM-TS5 expression and proteoglycan degradation in growth plate cartilage. Endocrinology, 144, 2480–2488. doi: 10.1210/en.2002-220746.PubMedGoogle Scholar
  77. 77.
    Tamamura, Y., Otani, T., Kanatani, N., Koyama, E., Kitagaki, J., Komori, T., et al. (2005). Developmental regulation of Wnt/beta-catenin signals is required for growth plate assembly, cartilage integrity, and endochondral ossification. The Journal of biological chemistry, 280, 19185–19195. doi: 10.1074/jbc.M414275200.PubMedGoogle Scholar
  78. 78.
    Parisi, M. S., Gazzerro, E., Rydziel, S., & Canalis, E. (2006). Expression and regulation of CCN genes in murine osteoblasts. Bone, 38, 671–677. doi: 10.1016/j.bone.2005.10.005.PubMedGoogle Scholar
  79. 79.
    Lake, A. C., Bialik, A., Walsh, K., & Castellot Jr, J. J. (2003). CCN5 is a growth arrest-specific gene that regulates smooth muscle cell proliferation and motility. The American journal of pathology, 162, 219–231.PubMedGoogle Scholar
  80. 80.
    Goessler, U. R., Bugert, P., Bieback, K., Deml, M., Sadick, H., Hormann, K., et al. (2005). In-vitro analysis of the expression of TGFbeta -superfamily-members during chondrogenic differentiation of mesenchymal stem cells and chondrocytes during dedifferentiation in cell culture. Cellular & molecular biology letters, 10, 345–362.Google Scholar
  81. 81.
    Greco, S. J., & Rameshwar, P. (2007). Enhancing effect of IL-1alpha on neurogenesis from adult human mesenchymal stem cells: implication for inflammatory mediators in regenerative medicine. Journal of immunology (Baltimore, Md. : 1950), 179, 3342–3350.Google Scholar
  82. 82.
    Tondreau, T., Dejeneffe, M., Meuleman, N., Stamatopoulos, B., Delforge, A., Martiat, P., et al. (2008). Gene expression pattern of functional neuronal cells derived from human bone marrow mesenchymal stromal cells. BMC genomics, 9, 166. doi: 10.1186/1471-2164-9-166.PubMedGoogle Scholar
  83. 83.
    Azizi, S. A., Stokes, D., Augelli, B. J., DiGirolamo, C., & Prockop, D. J. (1998). Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats—similarities to astrocyte grafts. Proc Natl Acad Sci USA, 95, 3908–3913. doi: 10.1073/pnas.95.7.3908.PubMedGoogle Scholar
  84. 84.
    Kopen, G. C., Prockop, D. J., & Phinney, D. G. (1999). Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci USA, 96, 10711–10716. doi: 10.1073/pnas.96.19.10711.PubMedGoogle Scholar
  85. 85.
    Sanchez-Ramos, J., Song, S., Cardozo-Pelaez, F., Hazzi, C., Stedeford, T., Willing, A., et al. (2000). Adult bone marrow stromal cells differentiate into neural cells in vitro. Experimental neurology, 164, 247–256. doi: 10.1006/exnr.2000.7389.PubMedGoogle Scholar
  86. 86.
    Prockop, D. J. (1997). Marrow stromal cells as stem cells for nonhematopoietic tissues. Science, 276, 71–74. doi: 10.1126/science.276.5309.71.PubMedGoogle Scholar
  87. 87.
    Pereira, R. F., O’Hara, M. D., Laptev, A. V., Halford, K. W., Pollard, M. D., Class, R., et al. (1998). Marrow stromal cells as a source of progenitor cells for nonhematopoietic tissues in transgenic mice with a phenotype of osteogenesis imperfecta. Proc Natl Acad Sci USA, 95, 1142–1147. doi: 10.1073/pnas.95.3.1142.PubMedGoogle Scholar
  88. 88.
    Bae, J. S., Han, H. S., Youn, D. H., Carter, J. E., Modo, M., Schuchman, E. H., et al. (2007). Bone marrow-derived mesenchymal stem cells promote neuronal networks with functional synaptic transmission after transplantation into mice with neurodegeneration. Stem cells (Dayton, Ohio), 25, 1307–1316. doi: 10.1634/stemcells.2006-0561.Google Scholar
  89. 89.
    Tanaka, J., Nakamura, H., & Miyawaki, S. (1988). Cerebellar involvement in murine sphingomyelinosis: a new model of Niemann-Pick disease. Journal of neuropathology and experimental neurology, 47, 291–300. doi: 10.1097/00005072-198805000-00008.PubMedGoogle Scholar
  90. 90.
    Yadid, G., Sotnik-Barkai, I., Tornatore, C., Baker-Cairns, B., Harvey-White, J., Pentchev, P. G., et al. (1998). Neurochemical alterations in the cerebellum of a murine model of Niemann-Pick type C disease. Brain research, 799, 250–256. doi: 10.1016/S0006-8993(98)00449-1.PubMedGoogle Scholar
  91. 91.
    Anversa, P., & Nadal-Ginard, B. (2002). Myocyte renewal and ventricular remodelling. Nature, 415, 240–243. doi: 10.1038/415240a.PubMedGoogle Scholar
  92. 92.
    Ip, J. E., Wu, Y., Huang, J., Zhang, L., Pratt, R. E., & Dzau, V. J. (2007). Mesenchymal stem cells use integrin beta1 not CXC chemokine receptor 4 for myocardial migration and engraftment. Molecular biology of the cell, 18, 2873–2882. doi: 10.1091/mbc.E07-02-0166.PubMedGoogle Scholar
  93. 93.
    Dar, A., Kollet, O., & Lapidot, T. (2006). Mutual, reciprocal SDF-1/CXCR4 interactions between hematopoietic and bone marrow stromal cells regulate human stem cell migration and development in NOD/SCID chimeric mice. Experimental hematology, 34, 967–975. doi: 10.1016/j.exphem.2006.04.002.PubMedGoogle Scholar
  94. 94.
    Wang, Y., Deng, Y., & Zhou, G. Q. (2008). SDF-1alpha/CXCR4-mediated migration of systemically transplanted bone marrow stromal cells towards ischemic brain lesion in a rat model. Brain research, 1195, 104–112. doi: 10.1016/j.brainres.2007.11.068.PubMedGoogle Scholar
  95. 95.
    Bhakta, S., Hong, P., & Koc, O. (2006). The surface adhesion molecule CXCR4 stimulates mesenchymal stem cell migration to stromal cell-derived factor-1 in vitro but does not decrease apoptosis under serum deprivation. Cardiovascular revascularization medicine: including molecular interventions, 7, 19–24. doi: 10.1016/j.carrev.2005.10.008.Google Scholar
  96. 96.
    Son, B. R., Marquez-Curtis, L. A., Kucia, M., Wysoczynski, M., Turner, A. R., Ratajczak, J., et al. (2006). Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases. Stem cells (Dayton, Ohio), 24, 1254–1264. doi: 10.1634/stemcells.2005-0271.Google Scholar
  97. 97.
    Wynn, R. F., Hart, C. A., Corradi-Perini, C., O’Neill, L., Evans, C. A., Wraith, J. E., et al. (2004). A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow. Blood, 104, 2643–2645. doi: 10.1182/blood-2004-02-0526.PubMedGoogle Scholar
  98. 98.
    Mangi, A. A., Noiseux, N., Kong, D., He, H., Rezvani, M., Ingwall, J. S., et al. (2003). Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nature medicine, 9, 1195–1201. doi: 10.1038/nm912.PubMedGoogle Scholar
  99. 99.
    Gnecchi, M., He, H., Liang, O. D., Melo, L. G., Morello, F., Mu, H., et al. (2005). Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nature medicine, 11, 367–368. doi: 10.1038/nm0405-367.PubMedGoogle Scholar
  100. 100.
    Mirotsou, M., Zhang, Z., Deb, A., Zhang, L., Gnecchi, M., Noiseux, N., et al. (2007). Secreted frizzled related protein 2 (Sfrp2) is the key Akt-mesenchymal stem cell-released paracrine factor mediating myocardial survival and repair. Proc Natl Acad Sci USA, 104, 1643–1648. doi: 10.1073/pnas.0610024104.PubMedGoogle Scholar
  101. 101.
    Akavia, U. D., Veinblat, O., & Benayahu, D. (2008). Comparing the transcriptional profile of mesenchymal cells to cardiac and skeletal muscle cells. Journal of cellular physiology, 216, 663–672. doi: 10.1002/jcp.21442.PubMedGoogle Scholar
  102. 102.
    Psaltis, P. J., Zannettino, A. C., Worthley, S. G., & Gronthos, S. (2008). Concise review: mesenchymal stromal cells: potential for cardiovascular repair. Stem cells (Dayton, Ohio), 26, 2201–2210. doi: 10.1634/stemcells.2008-0428.Google Scholar
  103. 103.
    Martens, T. P., See, F., Schuster, M. D., Sondermeijer, H. P., Hefti, M. M., Zannettino, A., et al. (2006). Mesenchymal lineage precursor cells induce vascular network formation in ischemic myocardium. Nature clinical practice. Cardiovascular medicine, 3(Suppl 1), S18–S22. doi: 10.1038/ncpcardio0404.PubMedGoogle Scholar
  104. 104.
    Park, J. S., Chu, J. S., Cheng, C., Chen, F., Chen, D., & Li, S. (2004). Differential effects of equiaxial and uniaxial strain on mesenchymal stem cells. Biotechnology and bioengineering, 88, 359–368. doi: 10.1002/bit.20250.PubMedGoogle Scholar
  105. 105.
    Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116, 281–297. doi: 10.1016/S0092-8674(04)00045-5.PubMedGoogle Scholar
  106. 106.
    Kloosterman, W. P., & Plasterk, R. H. (2006). The diverse functions of microRNAs in animal development and disease. Developmental cell, 11, 441–450. doi: 10.1016/j.devcel.2006.09.009.PubMedGoogle Scholar
  107. 107.
    Sorrentino, A., Ferracin, M., Castelli, G., Biffoni, M., Tomaselli, G., Baiocchi, M., et al. (2008). Isolation and characterization of CD146+ multipotent mesenchymal stromal cells. Experimental hematology, 36, 1035–1046. doi: 10.1016/j.exphem.2008.03.004.PubMedGoogle Scholar
  108. 108.
    Shi, S., & Gronthos, S. (2003). Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research, 18, 696–704. doi: 10.1359/jbmr.2003.18.4.696.Google Scholar
  109. 109.
    Scheideler, M., Elabd, C., Zaragosi, L. E., Chiellini, C., Hackl, H., Sanchez-Cabo, F., et al. (2008). Comparative transcriptomics of human multipotent stem cells during adipogenesis and osteoblastogenesis. BMC genomics, 9, 340. doi: 10.1186/1471-2164-9-340.PubMedGoogle Scholar
  110. 110.
    Rodriguez, A. M., Elabd, C., Delteil, F., Astier, J., Vernochet, C., Saint-Marc, P., et al. (2004). Adipocyte differentiation of multipotent cells established from human adipose tissue. Biochemical and biophysical research communications, 315, 255–263. doi: 10.1016/j.bbrc.2004.01.053.PubMedGoogle Scholar
  111. 111.
    Zaragosi, L. E., Ailhaud, G., & Dani, C. (2006). Autocrine fibroblast growth factor 2 signaling is critical for self-renewal of human multipotent adipose-derived stem cells. Stem cells (Dayton, Ohio), 24, 2412–2419. doi: 10.1634/stemcells.2006-0006.Google Scholar
  112. 112.
    Elabd, C., Chiellini, C., Massoudi, A., Cochet, O., Zaragosi, L. E., Trojani, C., et al. (2007). Human adipose tissue-derived multipotent stem cells differentiate in vitro and in vivo into osteocyte-like cells. Biochemical and biophysical research communications, 361, 342–348. doi: 10.1016/j.bbrc.2007.06.180.PubMedGoogle Scholar
  113. 113.
    Rodriguez, A. M., Pisani, D., Dechesne, C. A., Turc-Carel, C., Kurzenne, J. Y., Wdziekonski, B., et al. (2005). Transplantation of a multipotent cell population from human adipose tissue induces dystrophin expression in the immunocompetent mdx mouse. The Journal of experimental medicine, 201, 1397–1405. doi: 10.1084/jem.20042224.PubMedGoogle Scholar
  114. 114.
    Liu, T. M., Martina, M., Hutmacher, D. W., Hui, J. H., Lee, E. H., & Lim, B. (2007). Identification of common pathways mediating differentiation of bone marrow- and adipose tissue-derived human mesenchymal stem cells into three mesenchymal lineages. Stem cells (Dayton, Ohio), 25, 750–760. doi: 10.1634/stemcells.2006-0394.Google Scholar
  115. 115.
    Ikeda, R., Yoshida, K., Tsukahara, S., Sakamoto, Y., Tanaka, H., Furukawa, K., et al. (2005). The promyelotic leukemia zinc finger promotes osteoblastic differentiation of human mesenchymal stem cells as an upstream regulator of CBFA1. The Journal of biological chemistry, 280, 8523–8530. doi: 10.1074/jbc.M409442200.PubMedGoogle Scholar
  116. 116.
    Hubler, T. R., Denny, W. B., Valentine, D. L., Cheung-Flynn, J., Smith, D. F., & Scammell, J. G. (2003). The FK506-binding immunophilin FKBP51 is transcriptionally regulated by progestin and attenuates progestin responsiveness. Endocrinology, 144, 2380–2387. doi: 10.1210/en.2003-0092.PubMedGoogle Scholar
  117. 117.
    Vittorioso, P., Cowling, R., Faure, J. D., Caboche, M., & Bellini, C. (1998). Mutation in the Arabidopsis PASTICCINO1 gene, which encodes a new FK506-binding protein-like protein, has a dramatic effect on plant development. Molecular and cellular biology, 18, 3034–3043.PubMedGoogle Scholar
  118. 118.
    Tsai, M. S., Hwang, S. M., Chen, K. D., Lee, Y. S., Hsu, L. W., Chang, Y. J., et al. (2007). Functional network analysis of the transcriptomes of mesenchymal stem cells derived from amniotic fluid, amniotic membrane, cord blood, and bone marrow. Stem cells (Dayton, Ohio), 25, 2511–2523. doi: 10.1634/stemcells.2007-0023.Google Scholar
  119. 119.
    Shi, S., Robey, P. G., & Gronthos, S. (2001). Comparison of human dental pulp and bone marrow stromal stem cells by cDNA microarray analysis. Bone, 29, 532–539. doi: 10.1016/S8756-3282(01)00612-3.PubMedGoogle Scholar
  120. 120.
    Butler, W. T., Ritchie, H. H., & Bronckers, A. L. (1997). Extracellular matrix proteins of dentine. Ciba Found Symp, 205, 107–115. discussion 115–107.PubMedGoogle Scholar
  121. 121.
    Butler, W. T., & Ritchie, H. (1995). The nature and functional significance of dentin extracellular matrix proteins. The International journal of developmental biology, 39, 169–179.PubMedGoogle Scholar
  122. 122.
    Boskey, A. L. (1996). Matrix proteins and mineralization: an overview. Connective tissue research, 35, 357–363. doi: 10.3109/03008209609029212.PubMedGoogle Scholar
  123. 123.
    Damsky, C. H. (1999). Extracellular matrix-integrin interactions in osteoblast function and tissue remodeling. Bone, 25, 95–96. doi: 10.1016/S8756-3282(99)00106-4.PubMedGoogle Scholar
  124. 124.
    Noonan, K. J., Stevens, J. W., Tammi, R., Tammi, M., Hernandez, J. A., & Midura, R. J. (1996). Spatial distribution of CD44 and hyaluronan in the proximal tibia of the growing rat. Journal of orthopaedic research: official publication of the Orthopaedic Research Society, 14, 573–581. doi: 10.1002/jor.1100140411.Google Scholar
  125. 125.
    Robey, P. G. (1996). Vertebrate mineralized matrix proteins: structure and function. Connective tissue research, 35, 131–136. doi: 10.3109/03008209609029183.PubMedGoogle Scholar
  126. 126.
    Tanaka, Y., Morimoto, I., Nakano, Y., Okada, Y., Hirota, S., Nomura, S., et al. (1995). Osteoblasts are regulated by the cellular adhesion through ICAM-1 and VCAM-1. Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research, 10, 1462–1469.Google Scholar
  127. 127.
    Zimmerman, D., Jin, F., Leboy, P., Hardy, S., & Damsky, C. (2000). Impaired bone formation in transgenic mice resulting from altered integrin function in osteoblasts. Developmental biology, 220, 2–15. doi: 10.1006/dbio.2000.9633.PubMedGoogle Scholar
  128. 128.
    Ducy, P., & Karsenty, G. (2000). The family of bone morphogenetic proteins. Kidney international, 57, 2207–2214. doi: 10.1046/j.1523-1755.2000.00081.x.PubMedGoogle Scholar
  129. 129.
    Karsenty, G. (1999). The genetic transformation of bone biology. Genes & development, 13, 3037–3051. doi: 10.1101/gad.13.23.3037.Google Scholar
  130. 130.
    McCarthy, T. L., Ji, C., & Centrella, M. (2000). Links among growth factors, hormones, and nuclear factors with essential roles in bone formation. Crit Rev Oral Biol Med, 11, 409–422. doi: 10.1177/10454411000110040201.PubMedGoogle Scholar
  131. 131.
    Montero, A., Okada, Y., Tomita, M., Ito, M., Tsurukami, H., Nakamura, T., et al. (2000). Disruption of the fibroblast growth factor-2 gene results in decreased bone mass and bone formation. The Journal of clinical investigation, 105, 1085–1093. doi: 10.1172/JCI8641.PubMedGoogle Scholar
  132. 132.
    Heikinheimo, K., Begue-Kirn, C., Ritvos, O., Tuuri, T., & Ruch, J. V. (1998). Activin and bone morphogenetic protein (BMP) signalling during tooth development. European journal of oral sciences, 106(Suppl 1), 167–173.PubMedGoogle Scholar
  133. 133.
    Russo, L. G., Maharajan, P., & Maharajan, V. (1998). Basic fibroblast growth factor (FGF-2) in mouse tooth morphogenesis. Growth factors (Chur, Switzerland), 15, 125–133. doi: 10.3109/08977199809117188.Google Scholar

Copyright information

© Springer Science + Business Media 2009

Authors and Affiliations

  • Danijela Menicanin
    • 1
    • 2
  • P. Mark Bartold
    • 2
  • Andrew C. W. Zannettino
    • 3
  • Stan Gronthos
    • 1
    Email author
  1. 1.Mesenchymal Stem Cell Group, Bone and Cancer Laboratories, Division of Haematology, Institute of Medical and Veterinary Science/ Hanson Institute and CSCRUniversity of AdelaideAdelaideAustralia
  2. 2.Colgate Australian Clinical Dental Research Centre, Dental SchoolUniversity of AdelaideAdelaideAustralia
  3. 3.Myeloma Research Laboratory, Bone and Cancer Laboratories, Division of Haematology, Institute of Medical and Veterinary Science/ Hanson Institute and CSCRUniversity of AdelaideAdelaideAustralia

Personalised recommendations