Stem Cell Reviews

, Volume 4, Issue 4, pp 269–274 | Cite as

Cord Blood Stem Cells: A Review of Potential Neurological Applications

Article

Abstract

It is estimated that as many as 128M individuals in the United States, or 1 in 3 people, might benefit from regenerative medicine therapy. Many of these usages include applications that affect the nervous system, including cerebral palsy, stroke, spinal cord injury and neurodegenerative disease such as Parkinson’s. The numbers of such individuals affected range from 10,000 (for cerebral palsy) to 700,000 annually (for stroke) at a cost of more than $65B. For the foreseeable future, regenerative medicine entrée to the clinic will depend upon the development of adult or non-embryonic stem (ES) cell therapies. Currently, non-ES cells easily available in large numbers from affected individuals can be found in the bone marrow, adipose tissue and umbilical cord blood (CB). It is our belief that CB stem cells are the best alternative to ES cells as these stem cells can be used to derive tissues from the mesodermal, endodermal and ectodermal germ lineages. CB contains a mixture of different types of stem cells in numbers not seen in any other location including embryonic-like stem cells, hematopoietic stem cells, endothelial stem cells, epithelial stem cells, mesenchymal stem cells and unrestricted somatic stem cells. This review will summarize the findings reported in the literature with regards to the use of CB stem cells to neurological applications including in vitro work, pre-clinical animal studies, and patient clinical trials.

Keywords

Cord blood Stem cells Stroke Cerebral palsy Neurological 

References

  1. 1.
    Rubinstein, P. (2006). Why cord blood? Human Immunology, 67, 398–404.PubMedCrossRefGoogle Scholar
  2. 2.
    Rubinstein, P., Rosenfield, R. E., Adamson, J. W., et al. (1993). Stored placental blood for unrelated bone marrow reconstitution. Blood, 81, 1679–1690.PubMedGoogle Scholar
  3. 3.
    Gluckman, E., Rocha, V., & Boyer-Chammard, A. (1997). Outcome of cord-blood transplantation from related and unrelated donors. New England Journal of Medicine, 337, 373–381.PubMedCrossRefGoogle Scholar
  4. 4.
    Harris, D. T., Badowski, M., Ahmad, N., & Gaballa, M. (2008). The potential of cord blood stem cells for use in regenerative medicine. Expert Opinion on Biological Therapy, 7(9), 1311–1322.CrossRefGoogle Scholar
  5. 5.
    Harris, D. T., & Rogers, I. (2007). Umbilical cord blood: a unique source of pluripotent stem cells for regenerative medicine. Current Stem Cell Research & Therapy, 2, 301–309.CrossRefGoogle Scholar
  6. 6.
    Seaberg, R. M., & van der Kooy, D. (2002). Adult rodent neurogenic regions: the ventricular subependyma contains neural stem cells, but the dentate gyrus contains restricted progenitors. Journal of Neuroscience, 22, 1784–1793.PubMedGoogle Scholar
  7. 7.
    Hill, E., Boontheekul, T., & Mooney, D. J. (2006). Regulating activation of transplanted cells controls tissue regeneration. Proceedings of the National Academy of Sciences of the United States of America, 103, 2494–2449.PubMedCrossRefGoogle Scholar
  8. 8.
    Tropepe, V., Coles, B. L., Chiasson, B. J., Horsford, D. J., Elia, A. J., McInnes, R. R., et al. (2000). Retinal stem cells in the adult mammalian eye. Science, 287, 2032–2036.PubMedCrossRefGoogle Scholar
  9. 9.
    Seaberg, R. M., Smukler, S. R., Kieffer, T. J., Enikolopov, G., Asghar, Z., Wheeler, M. B., et al. (2004). Clonal identification of multipotent precursors from adult mouse pancreas that generate neural and pancreatic lineages. Nature Biotechnology, 22, 1115–1124.PubMedCrossRefGoogle Scholar
  10. 10.
    Toma, J. G., Akhavan, M., Fernandes, K. J., Barnabe-Heider, F., Sadikot, A., Kaplan, D. R., et al. (2001). Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nature Cell Biology, 3, 778–784.PubMedCrossRefGoogle Scholar
  11. 11.
    Yoon, B. I., Choi, Y. K., & Kim, D. Y. (2004). Differentiation processes of oval cells into hepatocytes: proposals based on morphological and phenotypical traits in carcinogen-treated hamster liver. Journal of Comparative Pathology, 131, 1–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Kogler, G., Sensken, S., & Wernet, P. (2006). Comparative generation and characterization of pluripotent unrestricted somatic stem cells with mesenchymal stem cells from human cord blood. Experimental Hematology, 34(11), 1589–95.PubMedCrossRefGoogle Scholar
  13. 13.
    McGuckin, C., Forraz, N., Baradez, M. O., et al. (2005). Production of stem cells with embryonic characteristics from human umbilical cord blood. Cell Proliferation, 38, 245–255.PubMedCrossRefGoogle Scholar
  14. 14.
    Copeland, N., Harris, D., & Gaballa, M. A. (2008). Human umbilical cord blood stem cells are a beneficial therapy in experimental models of myocardial infarction and stroke. Clinical Medicine: Cardiology, in press.Google Scholar
  15. 15.
    Sunkomat, J. N. E, Goldman, S., Harris, D. T., et al. (2008). Cord blood-derived MNCs delivered intracoronary contribute differently to vascularization compared to CD34+ cells in the rat model of acute ischemia. Manuscript submitted for publication.Google Scholar
  16. 16.
    Harris, D. T., He, X., Camacho, D., Gonzalez, V., & Nichols, J. C. (2006). The potential of cord blood stem cells for use in tissue engineering of the eye, stem cells & regenerative medicine, Jan 23–25, 2006, San Francisco, AbstractGoogle Scholar
  17. 17.
    Harris, D. T., He, X., Badowski, M., & Nicols, J. C. (2008). Regenerative medicine of the eye: a short review. In N. Levicar, N. A. Habib, I. Dimarakis, & M. Y. Gordon (Eds.), Stem cell repair & regeneration(vol. 3). London: Imperial College Press.Google Scholar
  18. 18.
    Nichols, J. C., He, X., & Harris, D. T. (2005). Differentiation of Cord Blood Stem Cells Into Corneal Epithelium. Invest Ophthalmol Vis Sci, 46, E-Abstract 4772.Google Scholar
  19. 19.
    Mcguckin, C. P., Forraz, N., Allouard, Q., & Pettengell, R. (2004). Umbilical cord blood stem cells can expand hematopoietic and neuroglial progenitors in vitro. Experimental Cell Research, 295, 350–359.PubMedCrossRefGoogle Scholar
  20. 20.
    Jang, Y. K., Park, J. J., Lee, M. C., et al. (2004). Retinoic acid-mediated induction of neurons and glial cells from human umbilical cord-derived hematopoietic stem cells. Journal of Neuroscience Research, 75, 573–584.PubMedCrossRefGoogle Scholar
  21. 21.
    Buzanska, L., Jurga, M., Stachowiak, E. K., Stachowiak, M. K., & Domanska-Janik, K. (2006). Neural stem-like cell line derived from a nonhematopoietic population of human umbilical cord blood. Stem Cells Develop, 15, 391–406.CrossRefGoogle Scholar
  22. 22.
    Harris, D. T., Ahmad, N., Saxena, S. K. et al. (2005). The Potential of Cord Blood Stem Cells for Use in Tissue Engineering. Abstract, Intl. TESi meeting, Shanghai, China, Oct 2005Google Scholar
  23. 23.
    Rogers, I., Yamanaka, N., Bielecki, R., Wong, C. J., Chua, S., Yuen, S., et al. (2007). Identification and analysis of in vitro cultured CD45-positive cells capable of multi-lineage differentiation. Experimental Cell Research, 313, 1839–1852.PubMedCrossRefGoogle Scholar
  24. 24.
    Mitsui, K., Tokuzawa, Y., Itoh, H., Segawa, K., Murakami, M., Takahashi, K., et al. (2003). The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell, 113, 631–642.PubMedCrossRefGoogle Scholar
  25. 25.
    Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676.PubMedCrossRefGoogle Scholar
  26. 26.
    Tippett, P., Andrews, P. W., Knowles, B. B., Solter, D., & Goodfellow, P. N. (1986). Red cell antigens P (globoside) and Luke: identification by monoclonal antibodies defining the murine stage-specific embryonic antigens -3 and -4 (SSEA-3 and SSEA-4). Vox Sang, 51, 53–56.PubMedCrossRefGoogle Scholar
  27. 27.
    Yu, M., Xiao, Z., Shen, L., & Li, L. (2004). Mid-trimester fetal blood-derived adherent cells share characteristics similar to mesenchymal stem cells but full-term umbilical cord blood does not. British Journal of Haematology, 124, 666–675.PubMedCrossRefGoogle Scholar
  28. 28.
    Schmidt, D., Breymann, Y., Weber, A., et al. (2004). Umbilical cord blood derived endothelial progenitor cells for tissue engineering of vascular grafts. Soc Thorac Surg, 78, 2094–2098.CrossRefGoogle Scholar
  29. 29.
    Chen, J., Sanberg, P. R., Li, Y., et al. (2001). Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke, 32, 2682–2688.PubMedCrossRefGoogle Scholar
  30. 30.
    Willing, A. E., Lixian, J., Milliken, M., et al. (2003). Intravenous versus intrastriatal cord blood administration in a rodent model of stroke. Journal of Neuroscience Research, 73(3), 296–307.PubMedCrossRefGoogle Scholar
  31. 31.
    Borlongan, C. V., Hadman, M., Sanberg, C. D., & Sanberg, P. R. (2004). Central nervous system entry of peripherally injected umbilical cord blood cells is not required for neuroprotection in stroke. Stroke, 35, 2385–2389.PubMedCrossRefGoogle Scholar
  32. 32.
    Newman, M. B., Willing, A. E., Manressa, J. J., Sanberg, C. D., & Sanberg, P. R. (2006). Cytokines produced by cultured human umbilical cord blood (HUCB) cells: implications for brain repair. Experimental Neurology, 199(1), 201–208.PubMedCrossRefGoogle Scholar
  33. 33.
    Vendrame, M., Cassady, J., Newcomb, J., et al. (2004). Infusion of human umbilical cord blood cells in a rat model of stroke dose-dependently rescues behavioral deficits and reduces infarct volume. Stroke, 35, 2390–2395.PubMedCrossRefGoogle Scholar
  34. 34.
    Xiao, J., Nan, Z., Motooka, Y., & Low, W. C. (2005). Transplantation of a novel cell line population of umbilical cord blood stem cells ameliorates neurological deficits associated with ischemic brain injury. Stem Cells Dev., 14, 722–733.PubMedCrossRefGoogle Scholar
  35. 35.
    Newcomb, J. D., Ajrno, C. T., Sanberg, C. D., et al. (2006). Timing of cord blood treatment after experimental stroke determines therapeutic efficacy. Cell Transplant, 15, 213–223.PubMedCrossRefGoogle Scholar
  36. 36.
    Vendrame, M., Gemma, C., Pennypacker, K. R., Bickford, P. C., Davis Sanberg, C., Sanberg, P. R., et al. (2006). Cord blood rescues stroke-induced changes in splenocyte phenotype and function. Experimental Neurology, 199(1), 191–200 May.PubMedCrossRefGoogle Scholar
  37. 37.
    Meier, C., Middelanis, J., Wasielewski, B., Neuhoff, S., Roth-Haerer, A., Gantert, M., et al. (2006). Spastic paresis after perinatal brain damage in rats is reduced by human cord blood mononuclear cells. Pediatric Research, 59(2), 244–249 Feb.PubMedCrossRefGoogle Scholar
  38. 38.
    Chen, S. H., Chang, F. M., Tsai, Y. C., Huang, K. F., Lin, C. L., & Lin, M. T. (2006). Infusion of human umbilical cord blood cells protect against cerebral ischemia and damage during heatstroke in the rat. Experimental Neurology, 199(1):67–76, May.PubMedCrossRefGoogle Scholar
  39. 39.
    Vendrame, M., Gemma, C., de Mesquita, D., Collier, L., Bickford, P. C., Sanberg, C. D., et al. (2005). Anti-inflammatory effects of human cord blood cells in a rat model of stroke. Stem Cells Dev., 14(5), 595–604 Oct.PubMedCrossRefGoogle Scholar
  40. 40.
    Nan, Z., Grande, A., Sanberg, C. D., Sanberg, P. R., & Low, W. C. (2005). Infusion of human umbilical cord blood ameliorates neurologic deficits in rats with hemorrhagic brain injury. Annals of the New York Academy of Sciences, 1049, 84–96 May.PubMedCrossRefGoogle Scholar
  41. 41.
    Nystedt, J., Mäkinen, S., Laine, J., & Jolkkonen, J. (2006). Human cord blood CD34+ cells and behavioral recovery following focal cerebral ischemia in rats. Acta Neurobiol Exp (Wars)., 66(4), 293–300.Google Scholar
  42. 42.
    Mäkinen, S., Kekarainen, T., Nystedt, J., Liimatainen, T., Huhtala, T., Närvänen, A., et al. (2006). Human umbilical cord blood cells do not improve sensorimotor or cognitive outcome following transient middle cerebral artery occlusion in rats. Brain Research, 1123(1), 207–215 Dec 6.PubMedCrossRefGoogle Scholar
  43. 43.
    Chang, C. K., Chang, C. P., Chiu, W. T., & Lin, M. T. (2006). Prevention and repair of circulatory shock and cerebral ischemia/injury by various agents in experimental heatstroke. Current Medicinal Chemistry, 13(26), 3145–54.PubMedCrossRefGoogle Scholar
  44. 44.
    Bliss, T., Guzman, R., Daadi, M., & Steinberg, G. K. (2007). Cell transplantation therapy for stroke. Stroke, 38, 817–826.PubMedCrossRefGoogle Scholar
  45. 45.
    Chen, N., Hudson, J. E., Walczak, P., et al. (2005). Human umbilical cord blood progenitors: the potential of these hematopoietic cells to become neural. Stem Cells, 23, 1560–1570.PubMedCrossRefGoogle Scholar
  46. 46.
    Saporta, S., Kim, J. J., Willing, A. E., et al. (2003). Human umbilical cord blood stem cells infusion in spinal cord injury: engraftment and beneficial influence on behavior. J. Hematother Stem Cell Res, 12, 271–278.PubMedCrossRefGoogle Scholar
  47. 47.
    Kuh, S. U., Cho, Y. E., Yoon, D. H., et al. (2005). Functional recovery after human umbilical cord blood cells transplantation with brain derived-neurotropic factor into the spinal cord injured rats. Acta Neurochirurgica (Wein), 14, 985–992.CrossRefGoogle Scholar
  48. 48.
    Kang, K. S., Kim, S. W., Oh, Y. H., et al. (2005). Thirty-seven-year old spinal cord-injured female patient, tranplanted of multipotent stem cells from human UC blood with improved sensory perception and mobility, both functionally and morphologically: A case study. Cytotherapy, 7, 368–373.PubMedCrossRefGoogle Scholar
  49. 49.
    Lu, D., Sanberg, P. R., Mahmood, A., et al. (2002). Intravenous administration of human umbilical cord blood reduces neurological deficit in the rat after traumatic brain injury. Cell Transplant, 11, 275–281.PubMedGoogle Scholar
  50. 50.
    Ende, N., & Chen, R. (2002). Parkinson’s disease mice and human umbilical cord blood. J Med, 33, 173–80.PubMedGoogle Scholar
  51. 51.
    Gaebuzova-Davis, S., Willing, A. E., Zigova, T., et al. (2003). Intravenous administration of human umbilical cord blood cells in a mouse model of amyotrophic lateral sclerosis: distribution, migration, and differentiation. Journal of Hematotherapy and Stem Cell Research, 12, 255–270.CrossRefGoogle Scholar
  52. 52.
    Nishio, Y., Koda, M., Kamada, T., Someya, Y., Yoshinaga, K., Okada, S., et al. (2006). The use of hemopoietic stem cells derived from human umbilical cord blood to promote restoration of spinal cord tissue and recovery of hindlimb function in adult rats. J Neurosurg Spine, 5, 424–33.PubMedCrossRefGoogle Scholar
  53. 53.
    Zhao, Z. M., Li, H. J., Liu, H. Y., Lu, S. H., Yang, R. C., Zhang, Q. J., et al. (2004). Intraspinal transplantation of CD34+ human umbilical cord blood cells after spinal cord hemisection injury improves functional recovery in adult rats. Cell Transplant, 13, 113–22.PubMedGoogle Scholar
  54. 54.
    Chen, R., & Ende, N. (2000). The potential for the use of mononuclear cells from human umbilical cord blood in the treatment of amyotrophic lateral sclerosis in SOD1 mice. J Med, 31, 21–30.PubMedGoogle Scholar
  55. 55.
    Ende, N., Weinstein, F., Chen, R., & Ende, M. (2000). Human umbilical cord blood effect on sod mice (amyotrophic lateral sclerosis). Life Sciences, 67, 53–59.PubMedCrossRefGoogle Scholar
  56. 56.
    Bachstetter, A. D., Pabon, M. M., Cole, M. J., Hudson, C. E., Sanberg, P. R., Willing, A. E., et al. (2008). Peripheral injection of human umbilical cord blood stimulates neurogenesis in the aged rat brain. 2008. Published online at BMC Neuroscience 9:30; doi:10.1186/1471–2202–9–22.
  57. 57.
    Nikolic, W. V., Hou, H., Town, T., Zhu, Y., Giunta, B., Sanberg, C. D., Zeng, J., Luo, D., Ehrhart, J., Mori, T., Sanberg Pr, Tan1 J. (2008). Peripherally administered human umbilical cord blood cells reduce parenchymal and vascular beta-amyloid deposits in Alzheimer mice. Stem Cells Develop., 17, 1–17.Google Scholar

Copyright information

© Humana Press 2008

Authors and Affiliations

  1. 1.Department of ImmunobiologyUniversity of ArizonaTucsonUSA
  2. 2.Cord Blood RegistryTucsonUSA

Personalised recommendations