Advertisement

Stem Cell Reviews

, Volume 4, Issue 3, pp 179–192 | Cite as

In Search of Liver Cancer Stem Cells

  • Stephanie Ma
  • Kwok Wah Chan
  • Xin-Yuan GuanEmail author
Article

Abstract

Recent research efforts in stem cell and cancer biology have put forth a “stem cell model of carcinogenesis” which stipulates that the capability to maintain tumor formation and growth specifically resides in a small population of cells called cancer stem cells. The stem cell-like characteristics of these cells, including their ability to self-renew and differentiate; and their limited number within the bulk of the tumor mass, are believed to account for their capability to escape conventional therapies. In the past few years, the hypothesis of stem cell-driven tumorigenesis in liver cancer has received substantial support from the recent ability to identify and isolate a subpopulation of liver cancer cells that is not only able to initiate tumor growth, but also serially establish themselves as tumor xenografts with high efficiency and consistency. In this review, stem cell biology that contributes to explain tumor development in the particular context of liver cancer will be discussed. We will begin by briefly considering the knowledge available on normal liver stem cells and their role in tissue renewal and regeneration. We will then summarize the current scientific knowledge of liver cancer stem cells, discuss their relevance to the diagnosis and treatment of the disease and consider the outstanding challenges and potential opportunities that lie ahead of us.

Keywords

HCC Liver cancer stem cells CD133 Liver regeneration ALDH 

Abbreviations

HPC

hepatic progenitor cells

HSC

hematopoietic stem cells

CSCs

cancer stem cells

HCC

hepatocellular carcinoma

HBV

hepatitis B virus

HCV

hepatitis C virus

SP

side population

PEI

percutaneous ethanol injection

RFA

radiofrequency ablation

TACE

transarterial chemoembolization

ALDH

aldehyde dehydrogenase

ALL

acute lymphoblastic leukemia

AML

acute myeloid leukemia

NOD/SCID

non-obese severe-combined immunodeficient

ATP

adenosine triphosphate

Notes

Competing interests

The authors declare that they have no competing interests.

References

  1. 1.
    Jemal, A., Siegel, R., Ward, E., et al. (2008). Cancer statistics. CA Cancer Journal for Clinicians, 58, 71–96.CrossRefGoogle Scholar
  2. 2.
    Farazi, P. A., & DePinho, R. A. (2006). Hepatocellular carcinoma pathogenesis: from genes to environment. Nature Review Cancer, 6, 674–687.PubMedCrossRefGoogle Scholar
  3. 3.
    Llovet, J. M., Burroughs, A., & Bruix, J. (2003). Hepatocellular carcinoma. Lancet, 362, 1907–1917.PubMedCrossRefGoogle Scholar
  4. 4.
    Thorgeirsson, S. S., & Grisham, J. W. (2002). Molecular pathogenesis of human hepatocellular carcinoma. Nature Genetics, 31, 339–346.PubMedCrossRefGoogle Scholar
  5. 5.
    Anzola, M. (2004). Hepatocellular carcinoma: role of hepatitis B and hepatitis C viruses’ proteins in hepatocarcinogenesis. Journal of Viral Hepatitis, 11, 383–393.PubMedCrossRefGoogle Scholar
  6. 6.
    Bosch, F. X., Ribes, J., Cleries, R., et al. (2005). Epidemiology of hepatocellular carcinoma. Clinics Liver Disease, 9, 191–211.CrossRefGoogle Scholar
  7. 7.
    El-Serag, H. B. (2002). Hepatocellular carcinoma: an epidemiologic view. Journal of Clinical Gastroenterology, 35, 72–78.CrossRefGoogle Scholar
  8. 8.
    El-Serag, H. B., Tran, T., & Everhart, J. E. (2004). Diabetes increases the risk of chronic liver disease and hepatocellular carcinoma. Gastroenterology, 126, 460–468.PubMedCrossRefGoogle Scholar
  9. 9.
    Benvegnu, L., Fattovich, G., Noventa, F., et al. (1994). Concurrent hepatitis B and C virus infection and risk of hepatocellular carcinoma in cirrhosis. A prospective study. Cancer, 74, 2442–2448.PubMedCrossRefGoogle Scholar
  10. 10.
    Brechot, C. (2004). Pathogenesis of hepatitis B virus-related hepatocellular carcinoma: old and new paradigms. Gastroenterology, 127, 56–61.CrossRefGoogle Scholar
  11. 11.
    Fattovich, G., Stroffolini, T., Zagni, I., et al. (2004). Hepatocellular carcinoma in cirrhosis: incidence and risk factors. Gastroenterology, 127, 35–50.CrossRefGoogle Scholar
  12. 12.
    Yu, M. C., & Yuan, J. M. (2004). Environmental factors and risk for hepatocellular carcinoma. Gastroenterology, 127, 72–78.CrossRefGoogle Scholar
  13. 13.
    El-Serag, H. B., & Mason, A. C. (1999). Rising incidence of hepatocellular carcinoma in the United States. New England Journal of Medicine, 340, 745–750.PubMedCrossRefGoogle Scholar
  14. 14.
    Sherman, M. (2005). Hepatocellular carcinoma: epidemiology, risk factors, and screening. Seminars in Liver Disease, 25, 143–154.PubMedCrossRefGoogle Scholar
  15. 15.
    Carr, B. I. (2004). Hepatocellular carcinoma: current management and future trends. Gastroenterology, 127, 218–224.CrossRefGoogle Scholar
  16. 16.
    Kassahun, W. T., Fangmann, J., Harms, J., et al. (2006). Liver resection and transplantation in the management of hepatocellular carcinoma: a review. Experimental and Clinical Transplantation, 4, 549–558.PubMedGoogle Scholar
  17. 17.
    Kulik, L., & Abecassis, M. (2004). Living donor liver transplantation for hepatocellular carcinoma. Gastroenterology, 127, 277–282.CrossRefGoogle Scholar
  18. 18.
    Llovet, J. M., Fuster, J., & Bruix, J. (1999). Intention-to-treat analysis of surgical treatment for early hepatocellular carcinoma: resection versus transplantation. Hepatology, 30, 1434–1440.PubMedCrossRefGoogle Scholar
  19. 19.
    Schwartz, M. (2004). Liver transplantation for hepatocellular carcinoma. Gastroenterology, 127, 268–276.CrossRefGoogle Scholar
  20. 20.
    Mazzaferro, V., Regalia, E., Doci, R., et al. (1996). Liver transplantation for the treatment of small hepatocellular carcinomas in patients with cirrhosis. New England Journal of Medicine, 334, 693–699.PubMedCrossRefGoogle Scholar
  21. 21.
    Aguayo, A., & Patt, Y. Z. (2001). Nonsurgical treatment of hepatocellular carcinoma. Seminars in Oncology, 28, 503–513.PubMedCrossRefGoogle Scholar
  22. 22.
    Kuvshinoff, B. W., & Ota, D. M. (2002). Radiofrequency ablation of liver tumors: influence of technique and tumor size. Surgery, 132, 605–611.PubMedCrossRefGoogle Scholar
  23. 23.
    Di Maio, M., De Maio, E., Perrone, F., et al. (2002). Hepatocellular carcinoma: systemic treatments. Journal of Clinical Gastroenterology, 35, 109–114.CrossRefGoogle Scholar
  24. 24.
    Llovet, J. M., & Bruix, J. (2003). Systematic review of randomized trials for unresectable hepatocellular carcinoma: chemoembolization improves survival. Hepatology, 37, 429–442.PubMedCrossRefGoogle Scholar
  25. 25.
    Li, L., & Neaves, W. B. (2006). Normal stem cells and cancer stem cells: the niche matters. Cancer Research, 66, 4553–4557.PubMedCrossRefGoogle Scholar
  26. 26.
    Pardal, R., Clarke, M. F., & Morrison, S. J. (2003). Applying the principles of stem-cell biology to cancer. Nature Review Cancer, 3, 895–902.PubMedCrossRefGoogle Scholar
  27. 27.
    Polyak, K., & Hahn, C. W. (2005). Roots and stems: stem cells in cancer. Nature Medicine, 11, 296–300.Google Scholar
  28. 28.
    Reya, T., Morrison, S. J., Clarke, M. F., et al. (2001). Stem cells, cancer and cancer stem cells. Nature, 414, 105–111.PubMedCrossRefGoogle Scholar
  29. 29.
    Beachy, P. A., Karhadkar, S. S., & Berman, D. M. (2004). Tissue repair and stem cell renewal in carcinogenesis. Nature, 432, 324–331.PubMedCrossRefGoogle Scholar
  30. 30.
    Perryman, S. C., & Sylvester, K. G. (2006). Repair and regeneration: opportunities for carcinogenesis from tissue stem cells. Journal of Cellular and Molecular Medicine, 10, 292–308.PubMedCrossRefGoogle Scholar
  31. 31.
    Fausto, N. (2004). Liver regeneration and repair: hepatocytes, progenitor cells and stem cells. Hepatology, 39, 1477–1487.PubMedCrossRefGoogle Scholar
  32. 32.
    Michalopoulos, G. K., & Defrances, M. C. (1997). Liver regeneration. Science, 276, 60–66.PubMedCrossRefGoogle Scholar
  33. 33.
    Alison, M. R., & Lovell, M. J. (2005). Liver cancer: the role of stem cells. Cell Proliferation, 38, 407–421.PubMedCrossRefGoogle Scholar
  34. 34.
    Forbes, S., Vig, P., Poulsom, R., et al. (2002). Hepatic stem cells. Journal of Pathology, 197, 510–518.PubMedCrossRefGoogle Scholar
  35. 35.
    Thorgeirsson, S. (1996). Hepatic stem cells in liver regeneration. The FASEB Journal, 10, 1249–1256.PubMedGoogle Scholar
  36. 36.
    Kallis, Y. N., Alison, M. R., & Forbes, S. J. (2007). Bone marrow stem cells and liver disease. Gut, 56, 716–724.PubMedCrossRefGoogle Scholar
  37. 37.
    Petersen, B. E., Bowen, W. C., Patrene, K. D., et al. (1999). Bone marrow as a potential source of hepatic oval cells. Science, 284, 1168–1170.PubMedCrossRefGoogle Scholar
  38. 38.
    Bellacosa, A. (2003). Genetic hits and mutation rate in colorectal tumorigenesis: versatility of Knudson's theory and implications for cancer prevention. Genes Chromosomes Cancer, 38, 382–388.PubMedCrossRefGoogle Scholar
  39. 39.
    Vogelstein, B., Fearon, E. R., Hamilton, S. R., et al. (1998). Genetic alterations during colorectal-tumor development. New England Journal of Medicine, 319, 525–532.Google Scholar
  40. 40.
    Hahn, W. C., & Weinberg, R. A. (2002). Rules for making human tumor cells. New England Journal of Medicine, 347, 1593–1603.PubMedCrossRefGoogle Scholar
  41. 41.
    Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100, 57–70.PubMedCrossRefGoogle Scholar
  42. 42.
    Al-Hajj, M., & Clarke, M. F. (2004). Self-renewal and solid tumor stem cells. Oncogene, 23, 7274–7282.PubMedCrossRefGoogle Scholar
  43. 43.
    Jordan, C. T., Guzman, M. L., & Noble, M. (2006). Cancer Stem Cells. New England Journal of Medicine, 335, 1253–1261.CrossRefGoogle Scholar
  44. 44.
    Spillane, J. B., & Henderson, M. A. (2007). Cancer stem cells: a review. ANZ Journal of Surgery, 77, 464–68.PubMedCrossRefGoogle Scholar
  45. 45.
    Burkert, J., Wright, N. A., & Alison, M. R. (2006). Stem cells and cancer: an intimate relationship. Journal of Pathology, 209, 287–297.PubMedCrossRefGoogle Scholar
  46. 46.
    Dean, M., Fojo, T., & Bates, S. (2005). Tumor stem cells and drug resistance. Nature Review Cancer, 5, 275–284.PubMedCrossRefGoogle Scholar
  47. 47.
    Virchow, R. (1855). Editorial. Virchows Archiv fuer Pathologische Anatomie und Physiologie und fuer Klinische Medizin, 3, 23.Google Scholar
  48. 48.
    Furth, J., & Kahn, M. C. (1937). The transmission of leukemia of mice with a single cell. American Journal of Cancer, 31, 276–282.Google Scholar
  49. 49.
    Till, J. E., & McCulloch, E. A. (1961). A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiation Research, 14, 213–222.PubMedCrossRefGoogle Scholar
  50. 50.
    Lapidot, T., Sirard, C., Vormoor, J., et al. (1994). A cell initiating human acute myeloid leukemia after transplantation into SCID mice. Nature, 367, 645–648.PubMedCrossRefGoogle Scholar
  51. 51.
    Bonnet, D., & Dick, J. E. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Medicine, 3, 730–737.PubMedCrossRefGoogle Scholar
  52. 52.
    Blair, A., Hogge, D. E., & Sutherland, H. J. (1998). Most acute myeloid leukemia progenitor cells with long-term proliferative ability in vitro and in vivo have the phenotype CD34+/CD71/HLA-DR. Blood, 92, 4325–4335.PubMedGoogle Scholar
  53. 53.
    Jin, L., Hope, K. J., Zhai, Q., et al. (2006). Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nature Medicine, 12, 1167–1174.PubMedCrossRefGoogle Scholar
  54. 54.
    Cheung, A. M. S., Wan, T. S. K., Leung, J. C. K., et al. (2007). Aldehyde dehydrogenase activity in leukemic blasts defines a subgroup of acute myeloid leukemia with adverse prognosis and superior NOD/SCID engrafting potential. Leukemia, 21, 1423–1430.PubMedCrossRefGoogle Scholar
  55. 55.
    Cox, C. V., Evely, R. S., Oakhill, A., et al. (2004). Characteristics of acute lymphoblastic leukemia progenitor cells. Blood, 104, 2919–2915.PubMedCrossRefGoogle Scholar
  56. 56.
    Cox, C. V., Martin, H. M., Kearns, P. R., et al. (2007). Characterization of a progenitor cell population in childhood T-cell acute lymphoblastic leukemia. Blood, 109, 674–682.PubMedCrossRefGoogle Scholar
  57. 57.
    Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., et al. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 100, 3983–3988.PubMedCrossRefGoogle Scholar
  58. 58.
    Ponti, D., Costa, A., Zaffaroni, N., et al. (2005). Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Research, 65, 5506–5511.PubMedCrossRefGoogle Scholar
  59. 59.
    Sophos, N. A., & Vasilious, V. (2003). Aldehyde dehydrogenase gene superfamily: the 2002 update. Chemico-Biological Interactions, 143, 5–22.PubMedCrossRefGoogle Scholar
  60. 60.
    Ginestier, C., Hur, M. H., Charafe-Jauffret, E., et al. (2007). ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell, 1, 555–567.PubMedCrossRefGoogle Scholar
  61. 61.
    Singh, S. K., Clarke, I. D., Terasaki, M., et al. (2003). Identification of a cancer stem cell in human brain tumors. Cancer Research, 63, 5821–5828.PubMedGoogle Scholar
  62. 62.
    Singh, S. K., Hawkins, C., Clarke, I. D., et al. (2004). Identification of human brain tumor initiating cells. Nature, 432, 396–401.PubMedCrossRefGoogle Scholar
  63. 63.
    Hemmati, H. D., Nakano, I., Lazareff, J. A., et al. (2003). Cancerous stem cells can arise from pediatric brain tumors. Proceedings of the National Academy of Sciences of the United States of America, 100, 15178–15183.PubMedCrossRefGoogle Scholar
  64. 64.
    Gali, R., Binda, E., Orfanelli, U., et al. (2004). Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Research, 64, 7011–7021.CrossRefGoogle Scholar
  65. 65.
    Yuan, X., Curtin, J., Xiong, Y., et al. (2004). Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene, 23, 9392–9400.PubMedCrossRefGoogle Scholar
  66. 66.
    Collins, A. T., Berry, P. A., Hyde, C., et al. (2005). Prospective identification of tumorigenic prostate cancer stem cells. Cancer Research, 65, 10946–10951.PubMedCrossRefGoogle Scholar
  67. 67.
    Patrawala, L., Calhoun, T., Schneider-Broussard, R., et al. (2006). Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene, 25, 1696–1708.PubMedCrossRefGoogle Scholar
  68. 68.
    Patrawala, L., Calhoun-Davis, T., Schneider-Broussard, R., et al. (2007). Hierarchical organization of prostate cancer cells in xenograft tumors: the CD44+ alpha2beta1+ cell population is enriched in tumor-initiating cells. Cancer Research, 67, 6796–6805.PubMedCrossRefGoogle Scholar
  69. 69.
    Miki, J., Furusato, B., Li, H., et al. (2007). Identification of putative stem cell markers, CD133 and CXCR4, in hTERT-immortalized primary nonmalignant and malignant tumor-derived human prostate epithelial cell lines and in prostate cancer specimens. Cancer Research, 67, 3153–3161.PubMedCrossRefGoogle Scholar
  70. 70.
    Fang, D., Nguyen, T. K., Leishear, K., et al. (2005). A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Research, 65, 9328–9337.PubMedCrossRefGoogle Scholar
  71. 71.
    Schatton, T., Murphy, G. F., Frank, N. Y., et al. (2008). Identification of cells initiating human melanomas. Nature, 451, 345–352.PubMedCrossRefGoogle Scholar
  72. 72.
    Suetsugu, A., Nagaki, M., Aoki, H., et al. (2006). Characterization of CD133+ hepatocellular carcinoma cells as cancer stem/progenitor cells. Biochemical and Biophysical Research Communications, 351, 820–824.PubMedCrossRefGoogle Scholar
  73. 73.
    Yin, S., Li, J., Hu, C., et al. (2007). CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. International Journal of Cancer, 120, 1436–1442.CrossRefGoogle Scholar
  74. 74.
    Ma, S., Chan, K. W., Hu, L., et al. (2007). Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology, 132, 2542–2556.PubMedCrossRefGoogle Scholar
  75. 75.
    Ma, S., Chan, K. W., Lee, T. K., et al. (2008). Tang KW, Wo JY, Zheng BJ, Guan XY. Aldehyde dehydrogenase discriminates the CD133 liver cancer stem cell populations. Molecular Cancer Research (in press).Google Scholar
  76. 76.
    Yang, Z. F., Ngai, P., Ho, D. W., et al. (2008). Identification of local and circulating cancer stem cells in human liver cancer. Hepatology, 47, 1–10.CrossRefGoogle Scholar
  77. 77.
    Yang, Z. F., Ho, D. W., Ng, M. N., et al. (2008). Significance of CD90+ cancer stem cells. Cancer Cell, 13, 153–166.PubMedCrossRefGoogle Scholar
  78. 78.
    O’Brien, C. A., Pollett, A., Gallinger, S., et al. (2007). A human colon cancer cell capable of initiating tumor growth in immunodeficient mice. Nature, 445, 106–110.PubMedCrossRefGoogle Scholar
  79. 79.
    Dalerba, P., Dylla, S. J., Park, I. K., et al. (2007). Phenotypic characterization of human colorectal cancer stem cells. Proceedings of the National Academy of Sciences of the United States of America, 104, 10158–10163.PubMedCrossRefGoogle Scholar
  80. 80.
    Ricci-Vitiani, L., Lombardi, D. G., Pilozzi, E., et al. (2007). Identification and expansion of human colon-cancer-initiating cells. Nature, 445, 111–115.PubMedCrossRefGoogle Scholar
  81. 81.
    Li, C. W., Heidt, D. G., Dalerba, P., et al. (2007). Identification of pancreatic cancer stem cells. Cancer Research, 67, 1030–1037.PubMedCrossRefGoogle Scholar
  82. 82.
    Hermann, P. C., Huber, S. L., Herrler, T., et al. (2007). Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell, 1, 313–323.PubMedCrossRefGoogle Scholar
  83. 83.
    Prince, M. E., Sivanandan, R., Kaczorowski, A., et al. (2007). Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 104, 973–978.PubMedCrossRefGoogle Scholar
  84. 84.
    Goodell, M. A., Brose, K., Paradis, G., et al. (1996). Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. Journal of Experimental Medicine, 183, 1797–1806.PubMedCrossRefGoogle Scholar
  85. 85.
    Goodell, M. A., Rosenzweig, M., Kim, H., et al. (1997). Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nature Medicine, 3, 1337–1345.PubMedCrossRefGoogle Scholar
  86. 86.
    Gottesman, M. M., Fojo, T., & Bates, S. E. (2002). Multidrug resistance in cancer: role of ATP-dependent transporters. Nature Review Cancer, 2, 48–58.PubMedCrossRefGoogle Scholar
  87. 87.
    Wu, C., & Alman, B. A. (2008). Side population cells in human cancers. Cancer Letter (in press).Google Scholar
  88. 88.
    Doyle, L. A., Yang, W., Abruzzo, L. V., et al. (1998). A multidrug resistance transporter from human MCF-7 breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 95, 15665–15670.PubMedCrossRefGoogle Scholar
  89. 89.
    Wulf, G. G., Wang, R. Y., Kuehnle, I., et al. (2001). A leukemic stem cell with intrinsic drug efflux capacity in acute myeloid leukemia. Blood, 98, 1166–1173.PubMedCrossRefGoogle Scholar
  90. 90.
    Hirschmann-Jax, C., Foster, A. E., Wuff, G. G., et al. (2004). A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proceedings of the National Academy of Sciences of the United States of America, 101, 14228–14233.PubMedCrossRefGoogle Scholar
  91. 91.
    Patrawala, L., Calhoun, T., Schneider-Broussard, R., et al. (2005). Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2-cancer cells are similarly tumorigenic. Cancer Research, 65, 6207–6219.PubMedCrossRefGoogle Scholar
  92. 92.
    Haraguchi, N., Utsunomiya, T., Inoue, H., et al. (2006). Characterization of a side population of cancer cells from human gastrointestinal system. Stem Cells, 24, 506–513.PubMedCrossRefGoogle Scholar
  93. 93.
    Chiba, T., Kita, K., Zheng, Y. W., et al. (2006). Side population purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties. Hepatology, 44, 240–251.PubMedCrossRefGoogle Scholar
  94. 94.
    Szotek, P. P., Pieretti-Vanmarcke, R., Masiakos, P. T., et al. (2006). Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian Inhibiting Substance responsiveness. Proceedings of the National Academy of Sciences of the United States of America, 103, 11154–1115.PubMedCrossRefGoogle Scholar
  95. 95.
    Wang, J., Guo, L. P., Chen, L. Z., et al. (2006). Identification of cancer stem cell-like side population cells in human nasopharyngeal carcinoma cell line. Cancer Research, 67, 3716–3724.CrossRefGoogle Scholar
  96. 96.
    Mitsutake, N., Iwao, A., Nagai, K., et al. (2007). Characterization of side population in thyroid cancer cell lines: cancer stem-like cells are enriched but not exclusively. Endocrinology, 148, 1797–1803.PubMedCrossRefGoogle Scholar
  97. 97.
    Ho, M. M., Ng, A. V., Lam, S., et al. (2007). Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Research, 67, 4827–4833.PubMedCrossRefGoogle Scholar
  98. 98.
    Zhou, J., Wang, C. Y., Liu, T., et al. (2008). Persistence of side population cells with high drug efflux capacity in pancreatic cancer. World Journal of Gastroenterology, 14, 925–930.PubMedCrossRefGoogle Scholar
  99. 99.
    Clarke, M. F., Dick, J. E., Dirks, P. B., et al. (2006). Cancer stem cells—perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Research, 66, 9339–9344.PubMedCrossRefGoogle Scholar
  100. 100.
    Hill, R. P. (2006). Identifying cancer stem cells in solid tumors: case not proven. Cancer Research, 66, 1891–1895.PubMedCrossRefGoogle Scholar
  101. 101.
    Forbes, S. J., & Alison, M. R. (2006). Side population (SP) cells: taking center stages in regeneration and liver cancer. Hepatology, 44, 23–25.PubMedCrossRefGoogle Scholar
  102. 102.
    Zheng, X., Shen, G., Yang, X., et al. (2007). Most C6 cells are cancer stem cells: evidence from clonal and population analysis. Cancer Research, 67, 3691–3697.PubMedCrossRefGoogle Scholar
  103. 103.
    Song, W., Li, H., Tao, K., et al. (2008). Expression and clinical significance of the stem cell marker CD133 in hepatocellular carcinoma. International Journal of Clinical Practice (in press).Google Scholar
  104. 104.
    Ma, S., Lee, T. K., Zheng, B. J., et al. (2008). CD133+HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway. Oncogene, 27, 1749–1758.PubMedCrossRefGoogle Scholar
  105. 105.
    Magni, M., Shammah, S., Schiro, R., Mellado, W., Dalla-Favera, R., Gianni, A. M. (1996). Induction of cyclophosphamide-resistance by aldehyde dehydrogenase gene transfer. Blood, 87, 1097–1103.PubMedGoogle Scholar
  106. 106.
    Pearce, D. J., Taussig, D., Simpson, C., Allen, K., Rohatiner, A. Z., Lister, T. A., Bonnet, D. (2005). Characterization of cells with a high aldehyde dehydrogenase activity from cord blood and acute myeloid leukemia samples. Stem Cells, 23, 752–760.PubMedCrossRefGoogle Scholar
  107. 107.
    Yamashita, T., Budhu, A., Forgues, M., et al. (2007). Activation of hepatic stem cell marker EpCAM by Wnt-β-catenin signaling in hepatocellular carcinoma. Cancer Research, 67, 10831–10839.PubMedCrossRefGoogle Scholar
  108. 108.
    Yamashita, T., Forgues, M., Wang, W., et al. (2008). EpCAM and alpha-fetoprotein expression defines novel prognostic subtypes of hepatocellular carcinoma. Cancer Research, 68, 1451–1461.PubMedCrossRefGoogle Scholar
  109. 109.
    Chiba, T., Zheng, Y. W., Kita, K., et al. (2007). Enhanced self-renewal capability in hepatic stem/progenitor cells drives cancer initiation. Gastroenterology, 133, 937–950.PubMedCrossRefGoogle Scholar
  110. 110.
    Tang, Y., Kitisin, K., Jogunoori, W., et al. (2008). Progenitor/stem cells give rise to liver cancer due to aberrant TFG-β and IL-6 signaling. PNAS, 105, 2445–2450.PubMedCrossRefGoogle Scholar
  111. 111.
    Hatfield, S. D., Shcherbata, H. R., Fischer, K. A., et al. (2005). Stem cell division is regulated by the microRNA pathway. Nature, 435, 974–978.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press 2008

Authors and Affiliations

  1. 1.Departments of Pathology, Li Ka Shing Faculty of MedicineThe University of Hong KongPokfulamChina
  2. 2.Departments of Clincial Oncology, Li Ka Shing Faculty of MedicineThe University of Hong KongPokfulamChina
  3. 3.Department of Clinical OncologyThe University of Hong KongPokfulamChina

Personalised recommendations