Stem Cell Reviews

, Volume 4, Issue 3, pp 159–168

Corneal Epithelial Stem Cells: Deficiency and Regulation



The corneal epithelium is continuously renewed by a population of stem cells that reside in the corneoscleral junction, otherwise known as the limbus. These limbal epithelial stem cells (LESC) are imperative for corneal maintenance with deficiencies leading to in-growth of conjunctival cells, neovascularisation of the corneal stroma and eventual corneal opacity and visual loss. One such disease that has traditionally been thought to be due to LESC deficiency is aniridia, a pan-ocular congenital eye disease due to mutations in the PAX6 gene. Corneal changes or aniridia related keratopathy (ARK) seen in aniridia are typical of LESC deficiency. However, the pathophysiology behind ARK is still ill defined, with current theories suggesting it may be caused by a deficiency in the stem cell niche and adjacent corneal stroma, with altered wound healing responses also playing a role (Ramaesh et al, International Journal of Biochemistry & Cell Biology 37:547–557, 2005) or abnormal epidermal differentiation of LESC (Li et al., The Journal of Pathology 214:9, 2008). PAX6 is considered the master control gene for the eye and is required for normal eye development with expression continuing in the adult cornea, thus inferring a role for corneal repair and regeneration (Sivak et al., Developments in Biologicals 222:41–54, 2000). Studies of models of Pax6 deficiency, such as the small eyed (sey) mouse, should help to reveal the intrinsic and extrinsic mechanisms involved in normal LESC function.


Limbal epithelial stem cells Limbus Cornea Aniridia PAX6 


  1. 1.
    Romano, A. C., Espana, E. M., Yoo, S. H., Budak, M. T., Wolosin, J. M., & Tseng, S. C. (2003). Different cell sized in human limbal and central corneal basal epithelia measured by confocal microscopy and flow cytometry. Investigative Ophthalmology & Visual Science, 44, 5125–5129.Google Scholar
  2. 2.
    Schermer, A., Galvin, S., & Sun, T. T. (1986). Differentiation-related expression of a major 64K corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells. Journal of Cell Biology, 103, 49–62.PubMedGoogle Scholar
  3. 3.
    Kurpakus, M. A., Stock, E. L., & Jones, J. C. (1990). Expression of the 55-kD/64-kD corneal keratins in ocular surface epithelium. Investigative Ophthalmology & Visual Science, 31, 448–456.Google Scholar
  4. 4.
    Barrandon, Y., & Green, H. (1987). Three clonal types of keratinocyte with different capacities for multiplication. Proceedings of the National Academy of Sciences of the United States of America, 84, 2302–2306.PubMedGoogle Scholar
  5. 5.
    Cotsarelis, G., Cheng, G., Dong, G., Sun, T. T., & Lavker, R. M. (1989). Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: Implications on epithelial stem cells. Cell, 57, 201–209.PubMedGoogle Scholar
  6. 6.
    Lavker, R. M., & Sun, T. T. (2003). Epithelial stem cells: The eye provides a vision. Eye, 17, 937–942.PubMedGoogle Scholar
  7. 7.
    Lehrer, M. S., Sun, T. T., & Lavker, R. M. (1998). Strategies of epithelial repair: Modulation o stem cell and transit amplifying cell proliferation. Journal of Cell Science, 111, 2867–2875.PubMedGoogle Scholar
  8. 8.
    Vauclair, S., Majo, F., Durham, A. D., Ghyselinck, N. B., Barrandon, Y., & Radtke, F. (2007). Corneal epithelial cell fate is maintained during repair by Notch 1 signalling via the regulation of vitamin A metabolism. Developmental Cell, 13, 12.Google Scholar
  9. 9.
    Pellegrini, G., Dellambra, E., Golisano, O., et al. (2001). p63 identifies keratinocyte stem cells. Proceedings of the National Academy of Sciences of the United States of America, 98, 3156–3161.PubMedGoogle Scholar
  10. 10.
    Watanabe, K., Nishida, K., Yamato, M., et al. (2004). Human limbal epithelium contains side population cells expressing the ATP-binding cassette transporter ABCG2. FEBS Letters, 565, 6–10.PubMedGoogle Scholar
  11. 11.
    Mann, I. (1944). A study of epithelial regeneration in the living eye. British Journal of Ophthalmology, 28, 26–40.PubMedGoogle Scholar
  12. 12.
    Davanger, M., & Evenson, A. (1971). Role of the pericorneal structure in renewal of corneal epithelium. Nature, 229, 560–561.PubMedGoogle Scholar
  13. 13.
    Huang, A. J., & Tseng, S. C. (1991). Corneal epithelial wound healing in the absence of limbal epithelium. Investigative Ophthalmology & Visual Science, 32, 96–105.Google Scholar
  14. 14.
    Kinoshita, S., Friend, J., & Thoft, R. A. (1981). Sex chromatin of donor corneal epithelium in rabbits. Investigative Ophthalmology & Visual Science, 21, 434–441.Google Scholar
  15. 15.
    Bickenbach, J. R. (1986). Identification and behavior of label-retaining cells in oral mucosa and skin. Journal of Dental Research, 60(Spec No C), 1611–1620.Google Scholar
  16. 16.
    Chaloin-Dufau, C., Sun, T. T., & Dhouailly, D. (1990). Appearance of the keratin pair K3/K12 during embryonic and adult corneal epithelial differentiation in the chick and in the rabbit. Cell Differentiation and Development, 32, 97–108.PubMedGoogle Scholar
  17. 17.
    Matic, M., Petrov, I. N., Chen, S., Wang, C., Dimitrijevich, S. D., & Wolosin, J. M. (1997). Stem cells of the corneal epithelium lack connexins and metabolite transfer capacity. Differentiation, 61, 251–260.PubMedGoogle Scholar
  18. 18.
    Chen, Z., de Paiva, C. S., Luo, L., Kretzer, F. L., Pflugfelder, S. C., & Li, D. Q. (2004). Characterization of putative stem cell phenotype in human limbal epithelia. Stem Cells, 22, 355–366.PubMedGoogle Scholar
  19. 19.
    Di Iorio, E., Barbaro, V., Ruzza, A., Ponzin, D., Pellegrini, G., & de Luca, M. (2005). Isoforms of DeltaNp63 and the migration of ocular limbal cells in human corneal regeneration. Proceedings of the National Academy of Sciences of the United States of America, 102, 9523–9528.PubMedGoogle Scholar
  20. 20.
    Hayashi, R., Yamato, M., Sugiyama, H., et al. (2007). N-Cadherin is expressed by putative stem/progenitor cells and melanocytes in the human limbal epithelial stem cell niche. Stem Cells, 25, 289–296.PubMedGoogle Scholar
  21. 21.
    Lavker, R. M., Dong, G., Cheng, S. Z., Kudoh, K., Cotsarelis, G., & Sun, T. T. (1991). Relative proliferative rates of limbal and corneal epithelia. Implications of corneal epithelial migration, circadian rhythm, and suprabasally located DNA-synthesizing keratinocytes. Investigative Ophthalmology & Visual Science, 32, 1864–1875.Google Scholar
  22. 22.
    Ebato, B., Friend, J., & Thoft, R. A. (1987). Comparison of central and peripheral human corneal epithelium in tissue culture. Investigative Ophthalmology & Visual Science, 28, 1450–1456.Google Scholar
  23. 23.
    Ebato, B., Friend, J., & Thoft, R. A. (1988). Comparison of limbal and peripheral human corneal epithelium in tissue culture. Investigative Ophthalmology & Visual Science, 29, 1533–1537.Google Scholar
  24. 24.
    Pellegrini, G., Golisano, O., Paterna, P., et al. (1999). Location and clonal analysis of stem cells and their differentiated progeny in the human ocular surface. Journal of Cell Biology, 145, 769–782.PubMedGoogle Scholar
  25. 25.
    Kruse, F. E., & Tseng, S. C. (1993). A tumor promoter-resistant subpopulation of progenitor cells is larger in limbal epithelium than in corneal epithelium. Investigative Ophthalmology & Visual Science, 34, 2501–2511.Google Scholar
  26. 26.
    Lavker, R. M., Wei, Z. G., & Sun, T. T. (1998). Phorbol ester preferentially stimulates mouse fornical conjunctival and limbal epithelial cells to proliferate in vivo. Investigative Ophthalmology & Visual Science, 39, 301–307.Google Scholar
  27. 27.
    Tseng, S. C. (1989). Concept and application of limbal stem cells. Eye, 3(Pt 2), 141–157.PubMedGoogle Scholar
  28. 28.
    Ambati, B. K., Nozaki, M., Singh, N., et al. (2006). Corneal avascularity is due to soluble VEGF receptor-1. Nature, 443, 993–997.PubMedGoogle Scholar
  29. 29.
    Ambati, B. K., Patterson, E., Jani, P., et al. (2007). Soluble vascular endothelial growth factor receptor-1 contributes to the corneal antiangiogenic barrier. British Journal of Ophthalmology, 91, 505–508.PubMedGoogle Scholar
  30. 30.
    Kenyon, K. R., & Tseng, S. C. (1989). Limbal autograft transplantation for ocular surface disorders. Ophthalmology, 96, 709–722.PubMedGoogle Scholar
  31. 31.
    Tsai, R. J.-F., Li, L.-M., & Chen, J.-K. (2000). Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells. New England Journal of Medicine, 343, 86–93.PubMedGoogle Scholar
  32. 32.
    Nakamura, M., Endo, K.-I., Cooper, L. J., et al. (2003). The successful culture and autologous transplantation of rabbit oral mucosal epithelial cells on amniotic membrane. Investigative Ophthalmology & Visual Science, 44, 106–116.Google Scholar
  33. 33.
    Schofield, R. (1983). The stem cell system. Biomedicine & Pharmacotherapy, 37, 375–380.Google Scholar
  34. 34.
    Watt, F. M., & Hogan, B. L. (2000). Out of Eden: stem cells and their niches. Science, 287, 1427–1430.PubMedGoogle Scholar
  35. 35.
    Higa, K., Shimmura, S., Miyashita, H., Shimazaki, J., & Tsubota, K. (2005). Melanocytes in the corneal limbus interact with K19-positive basal epithelial cells. Experimental Eye Research, 81, 218–223.PubMedGoogle Scholar
  36. 36.
    Baum, J. L. (1970). Melanocyte and Langerhans cell population of the cornea and limbus in the albino animal. American Journal of Ophthalmology, 69, 669–676.PubMedGoogle Scholar
  37. 37.
    Vantrappen, L., Geboes, K., Missotten, L., Maudgal, P. C., & Desmet, V. (1985). Lymphocytes and Langerhans cells in the normal human cornea. Investigative Ophthalmology & Visual Science, 26, 220–225.Google Scholar
  38. 38.
    Shimmura, S., & Tsubota, K. (1997). Ultraviolet B-induced mitochondrial dysfunction is associated with decreased cell detachment of corneal epithelial cells in vitro. Investigative Ophthalmology & Visual Science, 38, 620–626.Google Scholar
  39. 39.
    Shortt, A. J., Secker, G. A., Munro, P. M., Khaw, P. T., Tuft, S. J., & Daniels, J. T. (2007). Characterisation of the limbal epithelial stem cell niche: novel imaging techniques permit in-vivo observation and targeted biopsy of limbal epithelial stem cells. Stem Cells, 5, 1402–1409.Google Scholar
  40. 40.
    Dua, H. S., Shanmuganathan, V. A., Powell-Richards, A. O., Tighe, P. J., & Joseph, A. (2005). Limbal epithelial crypts: a novel anatomical structure and a putative limbal stem cell niche. British Journal of Ophthalmology, 89, 529–532.PubMedGoogle Scholar
  41. 41.
    Ljubimov, A. V., Burgeson, R. E., Butkowski, R. J., Micheal, A. F., Sun, T. T., & Kenney, M. C. (1995). Human corneal basement membrane heterogeneity: topographical differences in the expression of type IV collagen and laminin isoforms. Laboratory Investigation, 72, 461–473.PubMedGoogle Scholar
  42. 42.
    Tuori, A., Uusitalo, H., et al. (1996). The immunohistochemical composition of the human corneal basement membrane. Cornea, 15, 286–294.PubMedGoogle Scholar
  43. 43.
    Schlotzer-Schrehardt, U., Dietrich, T., Saito, K., et al. (2007). Characterization of extracellular matrix components in the limbal epithelial stem cell compartment. Experimental Eye Research, 85, 845–860.PubMedGoogle Scholar
  44. 44.
    Klenkler, B., & Sheardown, H. (2004). Growth factors in the anterior segment: Role in tissue maintenance, wound healing and ocular pathology. Experimental Eye Research, 79, 677–688.PubMedGoogle Scholar
  45. 45.
    Miyashita, H., Higa, K., Kato, N., et al. (2007). Hypoxia enhances the expansion of human limbal epithelial progenitor cells in vitro. Investigative Ophthalmology & Visual Science, 48, 3586–3593.Google Scholar
  46. 46.
    Lawrenson, J. G., & Ruskell, G. L. (1991). The structure of corpuscular nerve endings in the limbal conjunctiva of the human eye. Journal of Anatomy, 177, 75–84.PubMedGoogle Scholar
  47. 47.
    Shimmura, S., Miyashita, H., Higa, K., Yoshida, S., Shimazaki, J., & Tsubota, K. (2006). Proteomic analysis of soluble factors secreted by limbal fibroblasts. Molecular Vision, 12, 478–484.PubMedGoogle Scholar
  48. 48.
    Nakamura, T., Ishikawa, F., Sonoda, K. H., et al. (2005). Characterization and distribution of bone marrow-derived cells in mouse cornea. Investigative Ophthalmology & Visual Science, 46, 497–503.Google Scholar
  49. 49.
    Gipson, I. K. (1989). The epithelial basement membrane zone of the limbus. Eye, 3, 132–140.PubMedGoogle Scholar
  50. 50.
    Dua, H. S., Joseph, A., Shanmuganathan, V. A., & Jones, R. E. (2003). Stem cell differentiation and the effects of deficiency. Eye, 17, 877–885.PubMedGoogle Scholar
  51. 51.
    Chee, K. Y., Kicic, A., & Wiffen, S. J. (2006). Limbal stem cells: the search for a marker. Clinical & Experimental Ophthalmology, 34, 64–73.Google Scholar
  52. 52.
    Arpitha, P., Prajna, N. V., Srinivasan, M., & Muthukkaruppan, V. (2005). High expression of p63 combined with a large N/C ratio defines a subset of human limbal epithelial cells: implications on epithelial stem cells. Investigative Ophthalmology & Visual Science, 46, 3631–3636.Google Scholar
  53. 53.
    Zhou, S., Schuetz, J. D., Bunting, K. D., et al. (2001). The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Natural Medicines, 7, 1028–1034.Google Scholar
  54. 54.
    de Paiva, C. S., Chen, Z., Corrales, R. M., Pflugfelder, S. C., & Li, D. Q. (2005). ABCG2 transporter identifies a population of clonogenic human limbal epithelial cells. Stem Cells, 23, 63–73.PubMedGoogle Scholar
  55. 55.
    Stepp, M. A., Zhu, L., Sheppard, D., & Cranfill, R. L. (1995). Localized distribution of alpha 9 integrin in the cornea and changes in expression during corneal epithelial cell differentiation. Journal of Histochemistry Cytochemistry, 43, 353–362.PubMedGoogle Scholar
  56. 56.
    Stepp, M. A., & Zhu, L. (1997). Upregulation of alpha 9 integrin and tenascin during epithelial regeneration after debridement in the cornea. Journal of Histochemistry Cytochemistry, 45, 189–201.PubMedGoogle Scholar
  57. 57.
    Jones, P. H., & Watt, F. M. (1993). Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression. Cell, 73, 713–724.PubMedGoogle Scholar
  58. 58.
    Li, D. Q., Chen, Z., Song, X. J., de Paiva, C. S., Kim, H. S., & Pflugfelder, S. C. (2005). Partial enrichment of a population of human limbal epithelial cells with putative stem cell properties based on collagen type IV adhesiveness. Experimental Eye Research, 80, 581–590.PubMedGoogle Scholar
  59. 59.
    Zhang, J., Niu, C., Ye, L., et al. (2003). Identification of the haematopoietic stem cell niche and control of the niche size. Nature, 425, 836–841.PubMedGoogle Scholar
  60. 60.
    Calvi, L. M., Adams, G. B., Weibrecht, K. W., et al. (2003). Osteoblastic cells regulate the haematopoietic stem cell niche. Nature, 425, 841–846.PubMedGoogle Scholar
  61. 61.
    Lambiase, A., Bonini, S., Micera, A., Rama, P., & Aloe, L. (1998). Expression of nerve growth factor receptors on the ocular surface in healthy subjects and during manifestation of inflammatory diseases. Investigative Ophthalmology & Visual Science, 39, 1272–1275.Google Scholar
  62. 62.
    Qi, H., Li, D. Q., Shine, H. D., et al. (2008). Nerve growth factor and its receptor TrkA serve as potential markers for human corneal epithelial progenitor cells. Experimental Eye Research, 86, 34–40.PubMedGoogle Scholar
  63. 63.
    Yoshida, S., Shimmura, S., Kawakita, T., et al. (2006). Cytokeratin 15 can be used to identify the limbal phenotype in normal and diseased ocular surfaces. Investigative Ophthalmology & Visual Science, 47, 4780–4786.Google Scholar
  64. 64.
    Thomas, P. B., Liu, Y. H., Zhuang, F. F., et al. (2007). Identification of Notch-1 expression in the limbal basal epithelium. Molecular Vision, 13, 337–344.PubMedGoogle Scholar
  65. 65.
    Ma, A., Boulton, M., Zhao, B., Connon, C., Cai, J., & Albon, J. (2007). A role for notch signaling in human corneal epithelial cell differentiation and proliferation. Investigative Ophthalmology & Visual Science, 48, 3576–3585.Google Scholar
  66. 66.
    Dong, Y., Roos, M., Gruijters, T., et al. (1994). Differential expression of two gap junctions proteins in corneal epithelium. European Journal of Cell Biology, 64, 95–100.PubMedGoogle Scholar
  67. 67.
    Watt, F. M., & Green, H. (1981). Involucrin synthesis is correlated with cell size in human epidermal cultures. Journal of Cell Biology, 90, 738–742.PubMedGoogle Scholar
  68. 68.
    Schlotzer-Schrehardt, U., & Kruse, F. E. (2005). Identification and characterisation of limbal stem cells. Experimental Eye Research, 81, 247–264.PubMedGoogle Scholar
  69. 69.
    Chen, J. J., & Tseng, S. C. (1991). Abnormal corneal epithelial wound healing in partial-thickness removal of limbal epithelium. Investigative Ophthalmology & Visual Science, 32, 2219–33.Google Scholar
  70. 70.
    Puangsricharern, V., & Tseng, S. C. (1995). Cytologic evidence of corneal diseases with limbal stem cell deficiency. Ophthalmology, 102, 1476–1485.PubMedGoogle Scholar
  71. 71.
    Holland, E. J., & Schwartz, G. S. (1996). The evolution of epithelial transplantation for severe ocular surface disease and a proposed classification system. Cornea, 15, 549–556.PubMedGoogle Scholar
  72. 72.
    Ramaesh, K., & Dhillon, B. (2003). Ex vivo expansion of corneal limbal epithelial/stem cells for corneal surface reconstruction. European Journal of Ophthalmology, 13, 515–524.PubMedGoogle Scholar
  73. 73.
    Lindberg, K., Brown, M. E., Chaves, H. V., Kenyon, K. R., & Rheinwald, J. G. (1993). In vitro propagation of human ocular surface epithelial cells for transplantation. Investigative Ophthalmology & Visual Science, 34, 2672–2679.Google Scholar
  74. 74.
    Pellegrini, G., Traverso, C. E., Franzi, A. T., Zingirian, M., Cancedda, R., & De Luca, M. (1997). Long-term restoration of damaged corneal surfaces with autologous cultivated human epithelium. The Lancet, 349, 990–993.Google Scholar
  75. 75.
    Koizumi, N., Inatomi, T., Suzuki, K., Sotozono, C., & Kinoshita, S. (2001). Cultivated corneal epithelial stem cell transplantation in ocular surface disorders. Ophthalmology, 108, 1569–1574.PubMedGoogle Scholar
  76. 76.
    Grueterich, M., Espana, E. M., Touhami, A., Ti, S. E., & Tseng, S. C. (2002). Phenotypic study of a case with successful transplantation of ex vivo expanded human limbal epithelium for unilateral total limbal stem cell deficiency. Ophthalmology, 109, 1547–1552.PubMedGoogle Scholar
  77. 77.
    Shortt, A. J., Secker, G. A., Notara, M. D., et al. (2007). Transplantation of ex-vivo cultured limbal epithelial stem cells—a review of current techniques and clinical results. Survey of Ophthalmology, 52, 483–502.PubMedGoogle Scholar
  78. 78.
    Mackman, G., Brightbill, F. S., & Optiz, J. M. (1979). Corneal changes in aniridia. American Journal of Ophthalmology, 87, 497–502.PubMedGoogle Scholar
  79. 79.
    Nishida, K., Kinoshita, S., Ohashi, Y., Kuwayama, Y., & Yamamoto, S. (1995). Ocular surface abnormalities in aniridia. American Journal of Ophthalmology, 120, 368–375.PubMedGoogle Scholar
  80. 80.
    Tseng, S. C., & Li, D. Q. (1996). Comparison of protein kinase C subtype expression between normal and aniridic human ocular surfaces: implications for limbal cell dysfunction in aniridia. Cornea, 15, 168–178.PubMedGoogle Scholar
  81. 81.
    Ramaesh, K., Ramaesh, T., Dutton, G. N., & Dhillon, B. (2005). Evolving concepts on the pathogenic mechanisms of aniridia related keratopathy. International Journal of Biochemistry & Cell Biology, 37, 547–557.Google Scholar
  82. 82.
    Li, W., Chen, Y. T., Hayashida, Y., et al. (2008). Down-regulation of Pax6 is associated with abnormal differentiation of corneal epithelial cells in severe ocular surface diseases. Journal of Pathology, 214, 114–122.PubMedGoogle Scholar
  83. 83.
    Margo, C. E. (1983). Congenital aniridia: a histopathologic study of the anterior segment in children. Journal of Pediatric Ophthalmology and Strabismus, 20, 192–198.PubMedGoogle Scholar
  84. 84.
    Nelson, L. B., Spaeth, G. L., Nowinski, T. S., Margo, C. E., & Jackson, L. (1984). Aniridia. A review. Survey of Ophthalmology, 28, 621–642.PubMedGoogle Scholar
  85. 85.
    Holland, E. J., Djalilian, A. R., & Schwartz, G. S. (2003). Management of aniridic keratopathy with keratolimbal allograft: a limbal stem cell transplantation technique. Ophthalmology, 110, 125–130.PubMedGoogle Scholar
  86. 86.
    Dua, H. S., & Azuara-Blanco, A. (2000). Limbal stem cells of the corneal epithelium. Survey of Ophthalmology, 44, 415–425.PubMedGoogle Scholar
  87. 87.
    Tiller, A. M., Odenthal, M. T., Verbraak, F. D., & Gortzak-Moorstein, N. (2003). The influence of keratoplasty on visual prognosis in aniridia: a historical review of one large family. Cornea, 22, 105–110.PubMedGoogle Scholar
  88. 88.
    Sivak, J. M., Mohan, R., Rinehart, W. B., Xu, P. X., Maas, R. L., & Fini, M. E. (2000). Pax-6 expression and activity are induced in the reepithelialising cornea and control activity of the transcriptional promotor for matrix metalloproteinase gelatinase B. Developments in Biologicals, 222, 41–54.Google Scholar
  89. 89.
    Davis, J., Duncan, M. K., Robison, W. G. J., & Piatigorsky, J. (2003). Requirement for Pax6 in corneal morphogenesis: A role in adhesion. Journal of Cell Science, 116, 2157–2167.PubMedGoogle Scholar
  90. 90.
    Ramaesh, T., Collinson, J. M., Ramaesh, K., Kaufman, M. H., West, J. D., & Dhillon, B. (2003). Corneal abnormalities in Pax6+/− small eye mice mimic human aniridia-related keratopathy. Investigative Ophthalmology & Visual Science, 44, 1871–1878.Google Scholar
  91. 91.
    Hill, R. E., Favor, J., Hogan, B. L., et al. (1991). Mouse small eye results from mutations in a paired-like homeobox-containing gene. Nature, 354, 522–525.PubMedGoogle Scholar
  92. 92.
    Glaser, T., Lane, J., & Housman, D. (1990). A mouse model of the aniridia–Wilms tumor deletion syndrome. Science, 250, 823–827.PubMedGoogle Scholar
  93. 93.
    Ton, C. C., Miwa, H., & Saunders, G. F. (1992). Small eye (Sey): Cloning and characterisation of the murine homolog of the human aniridia gene. Genomics, 13, 251–256.PubMedGoogle Scholar
  94. 94.
    Turque, N., Plaza, S., Radvanyi, F., Carriere, C., & Saule, S. (1994). Pax-QNR/Pax6, a paired box- and homeobox-containing gene expressed in neurons, is also expressed in pancreatic endocrine cells. Molecular Endocrinology, 8, 929–938.PubMedGoogle Scholar
  95. 95.
    Stoykova, A., & Gruss, P. (1994). Roles of Pax-6 genes in developing and adult brain as suggested by expression patterns. Journal of Neuroscience, 3, 1395–1412.Google Scholar
  96. 96.
    Liu, C. Y., Zhu, G., Westerhausen-Larson, A., Converse, R., Kao, C. W., & Sun, T. T. (1993). Cornea-specific expression of K12 keratin during mouse development. Current Eye Research, 12, 963–974.PubMedGoogle Scholar
  97. 97.
    Shiraishim, A., Converse, R. L., Liu, C. Y., Zhou, F., Kao, C. W., & Kao, W. W. (1998). Identification of the cornea-specific keratin 12 promoter by in vivo particle-mediated gene transfer. Investigative Ophthalmology & Visual Science, 39, 2554–2561.Google Scholar
  98. 98.
    Li, T., & Lu, L. (2005). Epidermal growth factor-induced proliferation requires down-regulation of Pax6 in corneal epithelial cells. Journal of Biological Chemistry, 280, 12988–12995.PubMedGoogle Scholar
  99. 99.
    Sivak, J. M., & Fini, M. E. (2002). MMPs in the eye: emerging roles for matrix metalloproteinases in ocular physiology. Progress in Retinal and Eye Research, 21, 1–14.PubMedGoogle Scholar
  100. 100.
    Kao, W. W., Liu, C. Y., Converse, R. L., et al. (1996). Keratin 12-deficient mice have fragile corneal epithelia. Investigative Ophthalmology & Visual Science, 37, 2572–2584.Google Scholar
  101. 101.
    Li, W., Chen, Y.-T., Hayashida, Y., et al. (2008). Down-regulation of Pax6 is associated with abnormal differentiation of corneal epithelial surface diseases. The Journal of Pathology, 214, 9.Google Scholar
  102. 102.
    Mukhopadhyay, M., Gorivodsky, M., Shtrom, S., et al. (2006). Dkk2 plays an essential role in the corneal fate of the ocular surface epithelium. Development, 133, 2149–2154.PubMedGoogle Scholar
  103. 103.
    Funderburgh, M. L., Du, Y., Mann, M. M., SundarRaj, N., & Funderburgh, J. L. (2005). PAX6 expression identifies progenitor cells for corneal keratocytes. FASEB Journal, 19, 1371–1373.PubMedGoogle Scholar

Copyright information

© Humana Press 2008

Authors and Affiliations

  1. 1.Cells for Sight Transplantation and Research Programme, Ocular Repair and Regeneration Biology Unit, Division of PathologyUCL Institute of OphthalmologyLondonUK

Personalised recommendations