Stem Cell Reviews

, Volume 4, Issue 1, pp 27–49 | Cite as

Recent Progress on Tissue-Resident Adult Stem Cell Biology and Their Therapeutic Implications

  • Murielle Mimeault
  • Surinder K. Batra


Recent progress in the field of the stem cell research has given new hopes to treat and even cure diverse degenerative disorders and incurable diseases in human. Particularly, the identification of a rare population of adult stem cells in the most tissues/organs in human has emerged as an attractive source of multipotent stem/progenitor cells for cell replacement-based therapies and tissue engineering in regenerative medicine. The tissue-resident adult stem/progenitor cells offer the possibility to stimulate their in vivo differentiation or to use their ex vivo expanded progenies for cell replacement-based therapies with multiple applications in human. Among the human diseases that could be treated by the stem cell-based therapies, there are hematopoietic and immune disorders, multiple degenerative disorders, such as Parkinson’s and Alzeimeher’s diseases, type 1 or 2 diabetes mellitus as well as eye, liver, lung, skin and cardiovascular disorders and aggressive and metastatic cancers. In addition, the genetically-modified adult stem/progenitor cells could also be used as delivery system for expressing the therapeutic molecules in specific damaged areas of different tissues. Recent advances in cancer stem/progenitor cell research also offer the possibility to targeting these undifferentiated and malignant cells that provide critical functions in cancer initiation and progression and disease relapse for treating the patients diagnosed with the advanced and metastatic cancers which remain incurable in the clinics with the current therapies.


Adult stem/progenitor cells Regenerative medicine Cancer stem/progenitor cells Targeted therapies Gene therapy 



ATP-binding cassette


adipose tissue-derived stem cells


adenosine triphosphate


bone marrow


bone morphogenic protein


carotid body


corneal epithelial stem cells


ciliary epithelium


central nervous system


cardiac stem/progenitor cells


CXC chemokine receptor-4


epidermal growth factor


epidermal growth factor receptor


endothelial progenitor cells


embryonic stem cells


fibroblast growth factor


human amniotic epithelial cells


hepatocyte growth factor


hepatic oval cells


hematopoietic stem cells


insulin-like growth factor


muscle-derived stem cells


mesenchymal stem cells


neural crest stem cells


neural stem cells


octamer-binding protein


patched receptor


stromal cell-derived factor-1




umbilical cord


sonic hedgehog ligand


umbilical cord blood


pancreatic stem cells


retinal stem cells


smooth-muscle cells


vascular endothelial growth factor


Wingless ligand



The authors on this manuscript are supported by the grants from the U.S. Department of Defense (PC04502, OC04110) and the National Institutes of Health (CA78590, CA111294). We thank Ms. Kristi L. Berger for editing the manuscript.


  1. 1.
    Bryder, D., Rossi, D. J., & Weissman, I. L. (2006). Hematopoietic stem cells: the paradigmatic tissue-specific stem cell. American Journal of Pathology, 169(2), 338–346.PubMedGoogle Scholar
  2. 2.
    Brittan, M., & Wright, N. A. (2002). Gastrointestinal stem cells. Journal of Pathology, 197(4), 492–509.PubMedGoogle Scholar
  3. 3.
    Potten, C. S., & Ellis, J. R. (2006). Adult small intestinal stem cells: identification, location, characteristics, and clinical applications. Ernst Schering Research Foundation Workshop, 60, 81–98.PubMedGoogle Scholar
  4. 4.
    Lavker, R. M., Tseng, S. C., & Sun, T. T. (2004). Corneal epithelial stem cells at the limbus: looking at some old problems from a new angle. Experimental Eye Research, 78(3), 433–446.PubMedGoogle Scholar
  5. 5.
    Watts, C., McConkey, H., Anderson, L., & Caldwell, M. (2005). Anatomical perspectives on adult neural stem cells. Journal of Anatomy, 207(3), 197–208.PubMedGoogle Scholar
  6. 6.
    Kim, C. F., Jackson, E. L., Woolfenden, A. E., et al. (2005). Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell, 121(6), 823–835.PubMedGoogle Scholar
  7. 7.
    Li, L., & Xie, T. (2005). Stem cell niche: Structure and function. Annual Review of Cell and Developmental Biology, 21, 605–631.PubMedGoogle Scholar
  8. 8.
    Guettier, C. (2005). Which stem cells for adult liver? Annales de Pathologie, 25(1), 33–44.PubMedGoogle Scholar
  9. 9.
    Leri, A., Kajstura, J., & Anversa, P. (2005). Cardiac stem cells and mechanisms of myocardial regeneration. Physiological Reviews, 85(4), 1373–1416.PubMedGoogle Scholar
  10. 10.
    Bonner-Weir, S., & Weir, G. C. (2005). New sources of pancreatic beta-cells. Nature Biotechnology, 23(7), 857–861.PubMedGoogle Scholar
  11. 11.
    Mimeault, M., & Batra, S. K. (2006). Recent advances on the significance of stem cells in tissue regeneration and cancer therapies. Stem Cells, 24, 2319–2345.PubMedGoogle Scholar
  12. 12.
    Koblas, T., Zacharovova, K., Berkova, Z., et al. (2007). Isolation and characterization of human CXCR4-positive pancreatic cells. Folia Biologica (Praha), 53(1), 13–22.Google Scholar
  13. 13.
    Schaffler, A., & Buchler, C. (2007). Concise review: adipose tissue-derived stromal cells--basic and clinical implications for novel cell-based therapies. Stem Cells, 25(4), 818–827.PubMedGoogle Scholar
  14. 14.
    Herrera, M. B., Bruno, S., Buttiglieri, S., et al. (2006). Isolation and characterization of a stem cell population from adult human liver. Stem Cells, 24(12), 2840–2850.PubMedGoogle Scholar
  15. 15.
    Lim, D. A., Huang, Y. C., & Alvarez-Buylla, A. (2007). The adult neural stem cell niche: lessons for future neural cell replacement strategies. Neurosurgery Clinics of North America, 18(1), 81–92.PubMedGoogle Scholar
  16. 16.
    Mimeault, M., Hauke, R., & Batra, S. K. (2007). Stem cells -- A revolution in therapeutics--Recent advances on the stem cell biology and their therapeutic applications in regenerative medicine and cancer therapies. Clinical Pharmacology and Therapeutics, 82, 252–264.PubMedGoogle Scholar
  17. 17.
    Beltrami, A. P., Barlucchi, L., Torella, D., et al. (2003). Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell, 114(6), 763–776.PubMedGoogle Scholar
  18. 18.
    van Vliet, P., Sluijter, J. P., Doevendans, P. A., & Goumans, M. J. (2007). Isolation and expansion of resident cardiac progenitor cells. Expert Reviews in Cardiovascular Therapy, 5(1), 33–43.Google Scholar
  19. 19.
    Dhawan, J., & Rando, T. A. (2005). Stem cells in postnatal myogenesis: molecular mechanisms of satellite cell quiescence, activation and replenishment. Trends in Cell Biology, 15(12), 666–673.PubMedGoogle Scholar
  20. 20.
    Peault, B., Rudnicki, M., Torrente, Y., et al. (2007). Stem and progenitor cells in skeletal muscle development, maintenance, and therapy. Molecular Therapy, 15(5), 867–877.PubMedGoogle Scholar
  21. 21.
    Griffiths, M. J., Bonnet, D., & Janes, S. M. (2005). Stem cells of the alveolar epithelium. Lancet, 366(9481), 249–260.PubMedGoogle Scholar
  22. 22.
    Liu, X., Driskell, R. R., & Engelhardt, J. F. (2004). Airway glandular development and stem cells. Current Topics in Developmental Biology, 64, 33–56.PubMedGoogle Scholar
  23. 23.
    Mimeault, M., & Batra, S. K. (2006). Recent advances on multiple tumorigenic cascades involved in prostatic cancer progression and targeting therapies. Carcinogenesis, 27, 1–22.PubMedGoogle Scholar
  24. 24.
    Mimeault, M., Hauke, R., Mehta, P. P., & Batra, S. K. (2007). Recent advances on cancer stem/progenitor cell research: therapeutic implications for overcoming resistance to the most aggressive cancers. Journal of Molecular and Cellular Medicine, 11, 981–1011.Google Scholar
  25. 25.
    Mimeault, M., & Batra, S. K. (2007). Interplay of distinct growth factors during epithelial-mesenchymal transition of cancer progenitor cells and molecular targeting as novel cancer therapies. Annals of Oncology, 18, 1605–1619.PubMedGoogle Scholar
  26. 26.
    Liu, F., Pan, X., Chen, G., et al. (2006). Hematopoietic stem cells mobilized by granulocyte colony-stimulating factor partly contribute to liver graft regeneration after partial orthotopic liver transplantation. Liver Transplantationantation, 12(7), 1129–1137.Google Scholar
  27. 27.
    Herzog, E. L., & Krause, D. S. (2006). Engraftment of marrow-derived epithelial cells: the role of fusion. Proceedings of the American Thoracic Society, 3(8), 691–695.PubMedGoogle Scholar
  28. 28.
    Oh, S. H., Witek, R. P., Bae, S. H., et al. (2007). Bone marrow-derived hepatic oval cells differentiate into hepatocytes in 2-acetylaminofluorene/partial hepatectomy-induced liver regeneration. Gastroenterology, 132(3), 1077–1087.PubMedGoogle Scholar
  29. 29.
    Friedrich, E. B., Walenta, K., Scharlau, J., Nickenig, G., & Werner, N. (2006). CD34-/CD133+/VEGFR-2+ endothelial progenitor cell subpopulation with potent vasoregenerative capacities. Circulation research, 98(3), E20–E25.PubMedGoogle Scholar
  30. 30.
    Schatteman, G. C., Dunnwald, M., & Jiao, C. (2007). Biology of bone marrow-derived endothelial cell precursors. American Journal of Physiology. Heart and Circulatory Physiology, 292(1), H1–H18.PubMedGoogle Scholar
  31. 31.
    Beachy, P. A., Karhadkar, S. S., & Berman, D. M. (2004). Tissue repair and stem cell renewal in carcinogenesis. Nature, 432(7015), 324–331.PubMedGoogle Scholar
  32. 32.
    Fang, D., Nguyen, T. K., Leishear, K., et al. (2005). A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Research, 65(20), 9328–9337.PubMedGoogle Scholar
  33. 33.
    Berns, A. (2005). Stem cells for lung cancer? Cell, 121(6), 811–813.PubMedGoogle Scholar
  34. 34.
    Galderisi, U., Cipollaro, M., & Giordano, A. (2006). Stem cells and brain cancer. Cell Death and Differentiation, 13, 5–11.PubMedGoogle Scholar
  35. 35.
    Woodward, W. A., Chen, M. S., Behbod, F., & Rosen, J. M. (2005). On mammary stem cells. Journal of Cell Science, 118(Pt 16), 3585–3594.PubMedGoogle Scholar
  36. 36.
    Mimeault, M., Hauke, R., & Batra, S. K. (2008). Recent advances on the molecular mechanisms involved in drug-resistance of cancer cells and novel targeting therapies. Clinical Pharmacology and Therapeutics, in press.Google Scholar
  37. 37.
    McMullen, N. M., & Pasumarthi, K. B. (2007). Donor cell transplantation for myocardial disease: does it complement current pharmacological therapies? Canadian Journal of Physiology and Pharmacology, 85(1), 1–15.PubMedGoogle Scholar
  38. 38.
    Behfar, A., Perez-Terzic, C., Faustino, R. S., et al. (2007). Cardiopoietic programming of embryonic stem cells for tumor-free heart repair. Journal of Experimental Medicine, 204(2), 405–420.PubMedGoogle Scholar
  39. 39.
    Garbuzova-Davis, S., Willing, A. E., Saporta, S., et al. (2006). Progress in Brain Research, 157, 207–222.PubMedGoogle Scholar
  40. 40.
    Chang, Y. C., Shyu, W. C., Lin, S. Z., & Li, H. (2007). Regenerative therapy for stroke. Cell Transplant, 16(2), 171–181.PubMedGoogle Scholar
  41. 41.
    Geraerts, M., Krylyshkina, O., Debyser, Z., & Baekelandt, V. (2007). Concise review: therapeutic strategies for Parkinson disease based on the modulation of adult neurogenesis. Stem Cells, 25(2), 263–270.PubMedGoogle Scholar
  42. 42.
    Trzaska, K. A., & Rameshwar, P. (2007). Current advances in the treatment of Parkinson’s disease with stem cells. Current Neurovascular Research, 4(2), 99–109.PubMedGoogle Scholar
  43. 43.
    Gharaee-Kermani, M., Gyetko, M. R., Hu, B., & Phan, S. H. (2007). New insights into the pathogenesis and treatment of idiopathic pulmonary fibrosis: a potential role for stem cells in the lung parenchyma and implications for therapy. Pharmaceutical Research, 24(5), 819–841.PubMedGoogle Scholar
  44. 44.
    Andrade, C. F., Wong, A. P., Waddell, T. K., Keshavjee, S., & Liu, M. (2007). Cell-based tissue engineering for lung regeneration. American Journal of Physiology. Lung Cellular and Molecular Physiology, 292(2), L510–L518.PubMedGoogle Scholar
  45. 45.
    Sharma, A. D., Cantz, T., Manns, M. P., & Ott, M. (2006). The role of stem cells in physiology, pathophysiology, and therapy of the liver. Stem Cell Review, 2(1), 51–58.CrossRefGoogle Scholar
  46. 46.
    Fiegel, H. C., Lange, C., Kneser, U., et al. (2006). Fetal and adult liver stem cells for liver regeneration and tissue engineering. Journal of Cellular and Molecular Medicine, 10(3), 577–587.PubMedGoogle Scholar
  47. 47.
    Fox, J. G., & Wang, T. C. J. (2007). Inflammation, atrophy, and gastric cancer. Clinical Investigator, 117(1), 60–69.Google Scholar
  48. 48.
    Fellous, T. G., Guppy, N. J., Brittan, M., & Alison, M. R. (2007). Cellular pathways to beta-cell replacement. Diabetes/Metabolism Research and Reviews, 23(2), 87–99.PubMedGoogle Scholar
  49. 49.
    Santana, A., Ensenat-Waser, R., Arribas, M. I., Reig, J. A., & Roche, E. (2006). Insulin-producing cells derived from stem cells: recent progress and future directions. Journal of Cellular and Molecular Medicine, 10(4), 866–883.PubMedGoogle Scholar
  50. 50.
    Lu, P., Liu, F., Yan, L., et al. (2007). Stem cells therapy for type 1 diabetes. Diabetes Research and Clinical Practice, 78, 1–7.PubMedGoogle Scholar
  51. 51.
    Kuroda, R., Usas, A., Kubo, S., et al. (2006). Cartilage repair using bone morphogenetic protein 4 and muscle-derived stem cells. Arthritis and Rheumatism, 54(2), 433–442.PubMedGoogle Scholar
  52. 52.
    Gimble, J. M., Katz, A. J., & Bunnell, B. A. (2007). Adipose-derived stem cells for regenerative medicine. Circulation Research, 100(9), 1249–1260.PubMedGoogle Scholar
  53. 53.
    Dragoo, J. L., Carlson, G., McCormick, F., et al. (2007). Healing full-thickness cartilage defects using adipose-derived stem cells. Tissue Engineering, 13, 1615–1621.PubMedGoogle Scholar
  54. 54.
    Helder, M. N., Knippenberg, M., Klein-Nulend, J., & Wuisman, P. I. (2007). Stem cells from adipose tissue allow challenging new concepts for regenerative medicine. Tissue Engineering, 13, 1799–1808.PubMedGoogle Scholar
  55. 55.
    Limb, G. A., Daniels, J. T., Cambrey, A. D., et al. (2006). Current prospects for adult stem cell-based therapies in ocular repair and regeneration. Current Eye Research, 31(5), 381–390.PubMedGoogle Scholar
  56. 56.
    MacLaren, R. E., Pearson, R. A., MacNeil, A., et al. (2006). Retinal repair by transplantation of photoreceptor precursors. Nature, 444(7116), 203–207.PubMedGoogle Scholar
  57. 57.
    Rossi, D. J., Bryder, D., & Weissman, I. L. (2007). Hematopoietic stem cell aging: Mechanism and consequence. Experimental Gerontology, 42(5), 385–390.PubMedGoogle Scholar
  58. 58.
    Barfield, R. C., Hale, G. A., Burnette, K., et al. (2007). Autologous transplantation of CD133 selected hematopoietic progenitor cells for treatment of relapsed acute lymphoblastic leukemia. Pediatric Blood Cancer, 48(3), 349–353.PubMedGoogle Scholar
  59. 59.
    Sora, F., Piccirillo, N., Chiusolo, P., et al. (2006). Mitoxantrone, carboplatin, cytosine arabinoside, and methylprednisolone followed by autologous peripheral blood stem cell transplantation: a salvage regimen for patients with refractory or recurrent non-Hodgkin lymphoma. Cancer, 106(4), 859–866.PubMedGoogle Scholar
  60. 60.
    Small, T. N., Young, J. W., Castro-Malaspina, H., et al. (2007). Intravenous busulfan and melphalan, tacrolimus, and short-course methotrexate followed by unmodified HLA-matched related or unrelated hematopoietic stem cell transplantation for the treatment of advanced hematologic malignancies. Biology of Blood and Marrow Transplantation, 13(2), 235–244.PubMedGoogle Scholar
  61. 61.
    Hope, K. J., Jin, L., & Dick, J. E. (2004). Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nature Immunology, 5(7), 738–743.PubMedGoogle Scholar
  62. 62.
    Singh, S. K., Hawkins, C., Clarke, I. D., et al. (2004). Identification of human brain tumour initiating cells. Nature, 432(7015), 396–401.PubMedGoogle Scholar
  63. 63.
    Al-Hajj, M., & Clarke, M. F. (2004). Self-renewal and solid tumor stem cells. Oncogene, 23(43), 7274–7282.PubMedGoogle Scholar
  64. 64.
    Bapat, S. A., Mali, A. M., Koppikar, C. B., & Kurrey, N. K. (2005). Stem and progenitor-like cells contribute to the aggressive behavior of human epithelial ovarian cancer. Cancer Research, 65(8), 3025–3029.PubMedGoogle Scholar
  65. 65.
    Hermann, P. C., Huber, S. L., & Herrler, T. (2007). Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cells, 1, 313–323.Google Scholar
  66. 66.
    Vescovi, A. L., Galli, R., & Reynolds, B. A. (2006). Brain tumour stem cells. Nature Reviews Cancer, 6(6), 425–436.PubMedGoogle Scholar
  67. 67.
    Mimeault, M., & Batra, S. K. (2007). Functions of tumorigenic and migrating cancer progenitor cells in cancer progression and metastasis and their therapeutic implications. Cancer Metastasis Reviews, 26(1), 203–214.PubMedGoogle Scholar
  68. 68.
    Dean, M., Fojo, T., & Bates, S. (2005). Tumour stem cells and drug resistance. Nature Reviews Cancer, 5(4), 275–284.PubMedGoogle Scholar
  69. 69.
    de Paiva, C. S., Chen, Z., Corrales, R. M., Pflugfelder, S. C., & Li, D. Q. (2005). ABCG2 transporter identifies a population of clonogenic human limbal epithelial cells. Stem Cells, 23(1), 63–73.PubMedGoogle Scholar
  70. 70.
    Budak, M. T., Alpdogan, O. S., Zhou, M., Lavker, R. M., Akinci, M. A., & Wolosin, J. M. (2005). Ocular surface epithelia contain ABCG2-dependent side population cells exhibiting features associated with stem cells. Journal of Cell Science, 118(Pt 8), 1715–1724.PubMedGoogle Scholar
  71. 71.
    Umemoto, T., Yamato, M., Nishida, K., Yang, J., Tano, Y., & Okano, T. (2006). Limbal epithelial side-population cells have stem cell-like properties, including quiescent state. Stem Cells, 24(1), 86–94.PubMedGoogle Scholar
  72. 72.
    Wilson, A., & Trumpp, A. (2006). Bone-marrow haematopoietic-stem-cell niches. Nature Reviews. Immunology, 6(2), 93–106.PubMedGoogle Scholar
  73. 73.
    Moore, K. A., & Lemischka, I. R. (2006). Stem cells and their niches. Science, 311(5769), 1880–1885.PubMedGoogle Scholar
  74. 74.
    Arai, F., & Suda, T. (2007). Maintenance of quiescent hematopoietic stem cells in the osteoblastic niche. Annals of the New York Academy of Sciences, 1106, 41–53.PubMedGoogle Scholar
  75. 75.
    Murphy, M. J., Wilson, A., & Trumpp, A. (2005). More than just proliferation: Myc function in stem cells. Trends in Cell Biology, 15(3), 128–137.PubMedGoogle Scholar
  76. 76.
    Urbanek, K., Cesselli, D., Rota, M., et al. (2006). Stem cell niches in the adult mouse heart. Proceedings of the National Academy of Sciences of the United States of America, 103(24), 9226–9231.PubMedGoogle Scholar
  77. 77.
    Kiel, M. J., Yilmaz, O. H., Iwashita, T., Yilmaz, O. H., Terhorst, C., & Morrison, S. J. (2005). SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell, 121(7), 1109–1121.PubMedGoogle Scholar
  78. 78.
    Delorme, B., Chateauvieux, S., & Charbord, P. (2006). The concept of mesenchymal stem cells. Regeneración médica, 1(4), 497–509.Google Scholar
  79. 79.
    Muller, P., Beltrami, A. P., Cesselli, D., Pfeiffer, P., Kazakov, A., & Bohm, M. (2005). Myocardial regeneration by endogenous adult progenitor cells. Journal of Molecular and Cellular Cardiology, 39(2), 377–387.PubMedGoogle Scholar
  80. 80.
    da Silva, M. L., Chagastelles, P. C., & Nardi, N. B. (2006). Mesenchymal stem cells reside in virtually all post-natal organs and tissues. Journal of Cell Science, 119(Pt 11), 2204–2213.Google Scholar
  81. 81.
    Zengin, E., Chalajour, F., Gehling, U. M., et al. (2006). Vascular wall resident progenitor cells: a source for postnatal vasculogenesis. Development, 133(8), 1543–1551.PubMedGoogle Scholar
  82. 82.
    Seeberger, K. L., Dufour, J. M., Shapiro, A. M., Lakey, J. R., Rajotte, R. V., & Korbutt, G. S. (2006). Expansion of mesenchymal stem cells from human pancreatic ductal epithelium. Laboratory Investigation, 86(2), 141–153.PubMedGoogle Scholar
  83. 83.
    Bernardo, M. E., Emons, J. A., Karperien, M., et al. (2007). Human mesenchymal stem cells derived from bone marrow display a better chondrogenic differentiation compared with other sources. Connective Tissue Research, 48(3), 132–140.PubMedGoogle Scholar
  84. 84.
    Gindraux, F., Selmani, Z., Obert, L., et al. (2007). Human and rodent bone marrow mesenchymal stem cells that express primitive stem cell markers can be directly enriched by using the CD49a molecule. Cell & Tissue Research, 327(3), 471–483.Google Scholar
  85. 85.
    Wolbank, S., Peterbauer, A., Fahrner, M., et al. (2007). Dose-dependent immunomodulatory effect of human stem cells from amniotic membrane: A comparison with human mesenchymal stem cells from adipose tissue. Tissue Engineering, 13, 1173–1183.PubMedGoogle Scholar
  86. 86.
    Chang, Y. J., Shih, D. T., Tseng, C. P., Hsieh, T. B., Lee, D. C., & Hwang, S. M. (2006). Disparate mesenchyme-lineage tendencies in mesenchymal stem cells from human bone marrow and umbilical cord blood. Stem Cells, 24, 679–685.PubMedGoogle Scholar
  87. 87.
    Hattan, N., Kawaguchi, H., Ando, K., et al. (2005). Purified cardiomyocytes from bone marrow mesenchymal stem cells produce stable intracardiac grafts in mice. Cardiovascular Research, 65(2), 334–344.PubMedGoogle Scholar
  88. 88.
    Kajstura, J., Rota, M., Whang, B., et al. (2005). Bone marrow cells differentiate in cardiac cell lineages after infarction independently of cell fusion. Circulation Research, 96(1), 127–137.PubMedGoogle Scholar
  89. 89.
    Ma, Y., Xu, Y., Xiao, Z., et al. (2006). Reconstruction of chemically burned rat corneal surface by bone marrow-derived human mesenchymal stem cells. Stem Cells, 24, 315–321.PubMedGoogle Scholar
  90. 90.
    Bobis, S., Jarocha, D., & Majka, M. (2006). Mesenchymal stem cells: characteristics and clinical applications. Folia Histochemica et Cytobiologica, 44(4), 215–230.PubMedGoogle Scholar
  91. 91.
    Sun, Y., Chen, L., Hou, X. G., et al. (2007). Differentiation of bone marrow-derived mesenchymal stem cells from diabetic patients into insulin-producing cells in vitro. Chinese Medical Journal (English), 120(9), 771–776.Google Scholar
  92. 92.
    Balbarini, A., Barsotti, M. C., Di, S. R., Leone, A., & Santoni, T. (2007). Circulating endothelial progenitor cells characterization, function and relationship with cardiovascular risk factors. Current Pharmaceutical Design, 13(16), 1699–1713.PubMedGoogle Scholar
  93. 93.
    Alison, M. R., Brittan, M., Lovell, M. J., & Wright, N. A. (2006). Markers of adult tissue-based stem cells. Handbook of Experimental Pharmacology, 174, 185–227.PubMedGoogle Scholar
  94. 94.
    Ceschel, S., Casotto, V., Valsecchi, M. G., et al. (2006). Survival after relapse in children with solid tumors: a follow-up study from the Italian off-therapy registry. Pediatric Blood Cancer, 47(5), 560–566.PubMedGoogle Scholar
  95. 95.
    Ju, Z., Jiang, H., Jaworski, M., et al. (2007). Telomere dysfunction induces environmental alterations limiting hematopoietic stem cell function and engraftment. Natural Medicines, 13, 742–747.Google Scholar
  96. 96.
    Ringden, O. (2007). Immunotherapy by allogeneic stem cell transplantation. Advances in Cancer Research, 97C, 25–60.PubMedCrossRefGoogle Scholar
  97. 97.
    Khalil, P. N., Weiler, V., Nelson, P. J., et al. (2007). Nonmyeloablative stem cell therapy enhances microcirculation and tissue regeneration in murine inflammatory bowel disease. Gastroenterology, 132(3), 944–954.PubMedGoogle Scholar
  98. 98.
    Wagner, W., Wein, F., Seckinger, A., et al. (2005). Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Experimental Hematology, 33(11), 1402–1416.PubMedGoogle Scholar
  99. 99.
    Le Blanc, K., & Ringden, O. (2007). Immunomodulation by mesenchymal stem cells and clinical experience. Journal of Internal Medicine, 262(5), 509–525.PubMedGoogle Scholar
  100. 100.
    Iwaguro, H., & Asahara, T. (2005). Endothelial progenitor cell culture and gene transfer. Methods in Molecular Medicine, 112, 239–247.PubMedGoogle Scholar
  101. 101.
    Hoogduijn, M. J., Crop, M. J., Peeters, A. M., et al. (2007). Human heart, spleen, and perirenal fat-derived mesenchymal stem cells have immunomodulatory capacities. Stem Cells and Development, 16(4), 597–604.PubMedGoogle Scholar
  102. 102.
    Okada, H., Suzuki, J., Futamatsu, H., Maejima, Y., Hirao, K., & Isobe, M. (2007). Attenuation of autoimmune myocarditis in rats by mesenchymal stem cell transplantation through enhanced expression of hepatocyte growth factor. International Heart Journal, 48(5), 649–661.PubMedGoogle Scholar
  103. 103.
    Shanti, R. M., Li, W. J., Nesti, L. J., Wang, X., & Tuan, R. S. (2007). Adult mesenchymal stem cells: biological properties, characteristics, and applications in maxillofacial surgery. Journal of Oral and Maxillofacial Surgery, 65(8), 1640–1647.PubMedGoogle Scholar
  104. 104.
    Sata, M., Saiura, A., Kunisato, A., et al. (2002). Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis. Natural Medicines, 8(4), 403–409.Google Scholar
  105. 105.
    Wang, C. H., Cherng, W. J., Yang, N. I., et al. (2007). Late-outgrowth endothelial cells attenuate ntimal hyperplasia contributed by mesenchymal stem cells after vascular injury. Arteriosclerosis, Thrombosis, and Vascular Biology, 28(1), 54–60.PubMedGoogle Scholar
  106. 106.
    Shen, W., Wang, Z., Punyanita, M., Lei, J., Sinav, A., Kral, J. G., et al. (2003). Adipose tissue quantification by imaging methods: a proposed classification. Obesity Research, 11(1), 5–16.PubMedGoogle Scholar
  107. 107.
    Prunet-Marcassus, B., Cousin, B., Caton, D., Andre, M., Penicaud, L., & Casteilla, L. (2006). From heterogeneity to plasticity in adipose tissues: site-specific differences. Experimental Cell Research, 312(6), 727–736.PubMedGoogle Scholar
  108. 108.
    Zuk, P. A., Zhu, M., Ashjian, P., et al. (2002). Human adipose tissue is a source of multipotent stem cells. Molecular Biology of the Cell, 13(12), 4279–4295.PubMedGoogle Scholar
  109. 109.
    Lin, Y., Liu, L., Li, Z., et al. (2006). Pluripotency potential of human adipose-derived stem cells marked with exogenous green fluorescent protein. Molecular and Cellular Biochemistry, 291(1–2), 1–10.PubMedGoogle Scholar
  110. 110.
    Valina, C., Pinkernell, K., Song, Y. H., et al. (2007). Intracoronary administration of autologous adipose tissue-derived stem cells improves left ventricular function, perfusion, and remodelling after acute myocardial infarction. European Heart Journal, 28(21), 2667–2677.PubMedGoogle Scholar
  111. 111.
    Dhar, S., Yoon, E. S., Kachgal, S., & Evans, G. R. (2007). Long-term maintenance of neuronally differentiated human adipose tissue-derived stem cells. Tissue Engineering, 13(11), 2625–2632.PubMedGoogle Scholar
  112. 112.
    Niemela, S. M., Miettinen, S., Konttinen, Y., et al. (2007). Fat tissue: views on reconstruction and exploitation. Journal of Craniofacial Surgery, 18(2), 325–335.PubMedGoogle Scholar
  113. 113.
    Liu, Y., Yan, X., Sun, Z., et al. (2007). Adipose-derived mesenchymal stem cells differentiate into skeletal muscle satellite cells and ameliorate muscular dystrophy in MDX mice. Stem Cells Development, 16(5), 695–706.Google Scholar
  114. 114.
    Usas, A., & Huard, J. (2007). Muscle-derived stem cells for tissue engineering and regenerative therapy. Biomaterials, 28(36), 5401–5406.PubMedGoogle Scholar
  115. 115.
    Shinin, V., Gayraud-Morel, B., Gomes, D., & Tajbakhsh, S. (2006). Asymmetric division and cosegregation of template DNA strands in adult muscle satellite cells. Nature Cell Biology, 8(7), 677–687.PubMedGoogle Scholar
  116. 116.
    Rouger, K., Fornasari, B., Armengol, V. L., et al. (2007). Progenitor cell isolation from muscle-derived cells based on adhesion properties. Journal of Histochemistry and Cytochemistry, 55(6), 607–618.PubMedGoogle Scholar
  117. 117.
    Tamaki, T., Okada, Y., Uchiyama, Y., et al. (2007). Synchronized reconstitution of muscle fibers, peripheral nerves and blood vessels by murine skeletal muscle-derived CD34(-)/45 (-) cells. Histochemistry and Cell Biology, 128(4), 349–360.PubMedGoogle Scholar
  118. 118.
    Furuta, A., Jankowski, R. J., Pruchnic, R., Yoshimura, N., & Chancellor, M. B. (2007). The potential of muscle-derived stem cells for stress urinary incontinence. Expert Opinion on Biological Therapy, 7(10), 1483–1486.PubMedGoogle Scholar
  119. 119.
    Torrente, Y., Belicchi, M., Marchesi, C., et al. (2007). Autologous transplantation of muscle-derived CD133+ stem cells in Duchenne muscle patients. Cell Transplant, 16(6), 563–577.PubMedGoogle Scholar
  120. 120.
    Okada, T., & Ozawa, K. (2008). Vector-producing tumor-tracking multipotent mesenchymal stromal cells for suicide cancer gene therapy. Frontiers in Bioscience, 13, 1887–1891.PubMedGoogle Scholar
  121. 121.
    Pollett, J. B., Corsi, K. A., Weiss, K. R., et al. (2007). Malignant transformation of multipotent muscle-derived cells by concurrent differentiation signals. Stem Cells, 25(9), 2302–2311.PubMedGoogle Scholar
  122. 122.
    Langenau, D. M., Keefe, M. D., Storer, N. Y., et al. (2007). Effects of RAS on the genesis of embryonal rhabdomyosarcoma. Genes & Development, 21(11), 1382–1395.Google Scholar
  123. 123.
    Mercer, S. E., Ewton, D. Z., Shah, S., Naqvi, A., & Friedman, E. (2006). Mirk/Dyrk1b mediates cell survival in rhabdomyosarcomas. Cancer Research, 66(10), 5143–5150.PubMedGoogle Scholar
  124. 124.
    Payne, T. R., Oshima, H., Okada, M., et al. (2007). A relationship between vascular endothelial growth factor, angiogenesis, and cardiac repair after muscle stem cell transplantation into ischemic hearts. Journal of the American College of Cardiology, 50(17), 1677–1684.PubMedGoogle Scholar
  125. 125.
    Anton, R., Kuhl, M., & Pandur, P. (2007). A molecular signature for the “master” heart cell. Bioessays, 29(5), 422–426.PubMedGoogle Scholar
  126. 126.
    Bearzi, C., Rota, M., Hosoda, T., et al. (2007). Human cardiac stem cells. Proceedings of the National Academy of Sciences of the United States of America, 104(35), 14068–14073.PubMedGoogle Scholar
  127. 127.
    Scobioala, S., Klocke, R., Kuhlmann, M., et al. (2008). Up-regulation of nestin in the infarcted myocardium potentially indicates differentiation of resident cardiac stem cells into various lineages including cardiomyocytes. The FASEB Journal, in press.Google Scholar
  128. 128.
    Dawn, B., Stein, A. B., Urbanek, K., et al. (2005). Cardiac stem cells delivered intravascularly traverse the vessel barrier, regenerate infarcted myocardium, and improve cardiac function. Proceedings of the National Academy of Sciences of the United States of America, 102(10), 3766–3771.PubMedGoogle Scholar
  129. 129.
    Urbanek, K., Rota, M., Cascapera, S., et al. (2005). Cardiac stem cells possess growth factor-receptor systems that after activation regenerate the infarcted myocardium, improving ventricular function and long-term survival. Circulation Research, 97(7), 663–673.PubMedGoogle Scholar
  130. 130.
    Christoforou, N., & Gearhart, J. D. (2007). Stem cells and their potential in cell-based cardiac therapies. Progress in Cardiovascular Diseases, 49(6), 396–413.PubMedGoogle Scholar
  131. 131.
    Sohn, R. L., Jain, M., & Liao, R. (2007). Adult stem cells and heart regeneration. Expert Reviews in Cardiovascular Therapy, 5(3), 507–517.Google Scholar
  132. 132.
    Bao, C., Guo, J., Lin, G., Hu, M., & Hu, Z. (2008). TNFR gene-modified mesenchymal stem cells attenuate inflammation and cardiac dysfunction following MI. Scandinavian Cardiovascular Journal, 1–7, in press.Google Scholar
  133. 133.
    Gao, F., He, T., Wang, H., et al. (2007). A promising strategy for the treatment of ischemic heart disease: Mesenchymal stem cell mediated vascular endothelial growth factor gene transfer in rats. Canadian Journal of Cardiology, 23(11), 891–898.PubMedGoogle Scholar
  134. 134.
    Huang, S. D., Lu, F. L., Xu, X. Y., et al. (2006). Transplantation of angiogenin-overexpressing mesenchymal stem cells synergistically augments cardiac function in a porcine model of chronic ischemia. Journal of Thoracic and Cardiovascular Surgery, 132(6), 1329–1338.PubMedGoogle Scholar
  135. 135.
    Haider, H. K., Elmadbouh, I., Jean-Baptiste, M., & Ashraf, M. (2008). Non-viral vector gene modification of stem cells for myocardial repair. Molecular Medicine, 14(1–2), 79–86.PubMedGoogle Scholar
  136. 136.
    Janssens, S., Dubois, C., Bogaert, J., et al. (2006). Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet, 367(9505), 113–121.PubMedGoogle Scholar
  137. 137.
    Ilancheran, S., Michalska, A., Peh, G., Wallace, E. M., Pera, M., & Manuelpillai, U. (2007). Stem cells derived from human fetal membranes display multi-lineage differentiation potential. Biology of Reproduction, 77, 577–588.PubMedGoogle Scholar
  138. 138.
    Bonanno, G., Mariotti, A., Procoli, A., et al. (2007). Human cord blood CD133+ cells immunoselected by a clinical-grade apparatus differentiate in vitro into endothelial- and cardiomyocyte-like cells. Transfusion, 47(2), 280–289.PubMedGoogle Scholar
  139. 139.
    Yamada, Y., Yokoyama, S., Wang, X. D., Fukuda, N., & Takakura, N. (2007). Cardiac stem cells in brown adipose tissue express CD133 and induce bone marrow nonhematopoietic cells to differentiate into cardiomyocytes. Stem Cells, 25(5), 1326–1333.PubMedGoogle Scholar
  140. 140.
    Guldner, N. W., Kajahn, J., Klinger, M., Sievers, H. H., & Kruse, C. (2006). Autonomously contracting human cardiomyocytes generated from adult pancreatic stem cells and enhanced in co-cultures with myocardial biopsies. International Journal of Artificial Organs, 29(12), 1158–1166.PubMedGoogle Scholar
  141. 141.
    Caspi, O., Huber, I., Kehat, I., et al. (2007). Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts. Journal of the American College of Cardiology, 50(19), 1884–1893.PubMedGoogle Scholar
  142. 142.
    Bartunek, J., Vanderheyden, M., Vandekerckhove, B., et al. (2005). Intracoronary injection of CD133-positive enriched bone marrow progenitor cells promotes cardiac recovery after recent myocardial infarction: feasibility and safety. Circulation, 112(9 Suppl), I178–I183.PubMedGoogle Scholar
  143. 143.
    Ahmadi, H., Baharvand, H., Ashtiani, S. K., et al. (2007). Safety analysis and improved cardiac function following local autologous transplantation of CD133(+) enriched bone marrow cells after myocardial infarction. Current Neurovascular Research, 4(3), 153–160.PubMedGoogle Scholar
  144. 144.
    Brada, L. M., Rosa, K., et al. (2008). Systemic delivery of adult stem cells improves cardiac function in spontaneously hypertensive rats. Clinical and Experimental Pharmacology and Physiology, 35(2), 113–119.Google Scholar
  145. 145.
    Napoli, C., Maione, C., Schiano, C., Fiorito, C., & Ignarro, L. J. (2007). Bone marrow cell-mediated cardiovascular repair: potential of combined therapies. Trends Molecular Medicine, 13(7), 278–286.Google Scholar
  146. 146.
    Sadat, S., Gehmert, S., Song, Y. H., et al. (2007). Cardioprotective effect of mesenchymal stem cells is mediated by IGF-I and VEGF. Biochemical and Biophysical Research Communications, 363(3), 674–679.PubMedGoogle Scholar
  147. 147.
    Ohnishi, S., Ohgushi, H., Kitamura, S., & Nagaya, N. (2007). Mesenchymal stem cells for the treatment of heart failure. International Journal of Hematology, 86(1), 17–21.PubMedGoogle Scholar
  148. 148.
    Atsma, D. E., Fibbe, W. E., & Rabelink, T. J. (2007). Atsma DE, Fibbe WE, Rabelink TJ. Opportunities and challenges for mesenchymal stem cell-mediated heart repair. Current Opinion in Lipidology, 18(6), 645–649.PubMedCrossRefGoogle Scholar
  149. 149.
    Lindvall, O., Kokaia, Z., & Martinez-Serrano, A. (2004). Stem cell therapy for human neurodegenerative disorders-how to make it work. Natural Medicines, 10, S42–S50.Google Scholar
  150. 150.
    Ourednik, J., Ourednik, V., Lynch, W. P., Schachner, M., & Snyder, E. Y. (2002). Neural stem cells display an inherent mechanism for rescuing dysfunctional neurons. Nature Biotechnology, 20(11), 1103–1110.PubMedGoogle Scholar
  151. 151.
    Trounson, A. (2006). The production and directed differentiation of human embryonic stem cells. Endocrine Reviews, 27(2), 208–219.PubMedGoogle Scholar
  152. 152.
    Walton, N. M., Sutter, B. M., Chen, H. X., et al. (2006). Derivation and large-scale expansion of multipotent astroglial neural progenitors from adult human brain. Development, 133(18), 3671–3681.PubMedGoogle Scholar
  153. 153.
    Pardal, R., Ortega-Saenz, P., Duran, R., & Lopez-Barneo, J. (2007). Glia-like stem cells sustain physiologic neurogenesis in the adult mammalian carotid body. Cell, 131(2), 364–377.PubMedGoogle Scholar
  154. 154.
    Lovell, M. A., Geiger, H., Van Zant, G. E., Lynn, B. C., & Markesbery, W. R. (2006). Isolation of neural precursor cells from Alzheimer’s disease and aged control postmortem brain. Neurobiology of Aging, 27(7), 909–917.PubMedGoogle Scholar
  155. 155.
    Ramaswamy, S., Shannon, K. M., & Kordower, J. H. (2007). Huntington’s disease: pathological mechanisms and therapeutic strategies. Cell Transplant, 16(3), 301–312.PubMedGoogle Scholar
  156. 156.
    Shetty, A. K., & Hattiangady, B. (2007). Concise review: prospects of stem cell therapy for temporal lobe epilepsy. Stem Cells, 25(10), 2396–2407.PubMedGoogle Scholar
  157. 157.
    Eftekharpour, E., Karimi-Abdolrezaee, S., Wang, J., El, B. H., Morshead, C., & Fehlings, M. G. (2007). Myelination of congenitally dysmyelinated spinal cord axons by adult neural precursor cells results in formation of nodes of Ranvier and improved axonal conduction. Journal of Neuroscience, 27(13), 3416–3428.PubMedGoogle Scholar
  158. 158.
    Smidt, M. P., & Burbach, J. P. (2007). How to make a mesodiencephalic dopaminergic neuron. Nature Reviews. Neuroscience, 8(1), 21–32.PubMedGoogle Scholar
  159. 159.
    Rodriguez-Gomez, J. A., Lu, J. Q., Velasco, I., et al. (2007). Persistent dopamine functions of neurons derived from embryonic stem cells in a rodent model of Parkinson disease. Stem Cells, 25(4), 918–928.PubMedGoogle Scholar
  160. 160.
    Roy, N. S., Cleren, C., Singh, S. K., Yang, L., & Beal, M. F. (2006). Functional engraftment of human ES cell-derived dopaminergic neurons enriched by coculture with telomerase-immortalized midbrain astrocytes. Natural Medicines, 12(11), 1259–1268.Google Scholar
  161. 161.
    Wu, Z. Y., Hui, G. Z., Lu, Y., Wu, X., & Guo, L. H. (2006). Transplantation of human amniotic epithelial cells improves hindlimb function in rats with spinal cord injury. Chinese Medical Journal (English), 119(24), 2101–2107.Google Scholar
  162. 162.
    Lee, M. W., Moon, Y. J., Yang, M. S., et al. (2007). Neural differentiation of novel multipotent progenitor cells from cryopreserved human umbilical cord blood. Biochemical and Biophysical Research Communications, 358(2), 637–643.PubMedGoogle Scholar
  163. 163.
    Ning, H., Lin, G., Lue, T. F., & Lin, C. S. (2006). Neuron-like differentiation of adipose tissue-derived stromal cells and vascular smooth muscle cells. Differentiation, 74(9–10), 510–518.PubMedGoogle Scholar
  164. 164.
    Chen, Z., de Paiva, C. S., Luo, L., Kretzer, F. L., Pflugfelder, S. C., & Li, D. Q. (2004). Characterization of putative stem cell phenotype in human limbal epithelia. Stem Cells, 22(3), 355–366.PubMedGoogle Scholar
  165. 165.
    Dua, H. S., Shanmuganathan, V. A., Powell-Richards, A. O., Tighe, P. J., & Joseph, A. (2005). Limbal epithelial crypts: a novel anatomical structure and a putative limbal stem cell niche. British Journal of Ophthalmology, 89(5), 529–532.PubMedGoogle Scholar
  166. 166.
    Schlotzer-Schrehardt, U., & Kruse, F. E. (2005). Identification and characterization of limbal stem cells. Experimental Eye Research, 81(3), 247–264.PubMedGoogle Scholar
  167. 167.
    Ye, J., Yao, K., & Kim, J. C. (2006). Mesenchymal stem cell transplantation in a rabbit corneal alkali burn model: engraftment and involvement in wound healing. Eye, 20(4), 482–490.PubMedGoogle Scholar
  168. 168.
    Li, W., Hayashida, Y., Chen, Y. T., & Tseng, S. C. (2007). Niche regulation of corneal epithelial stem cells at the limbus. Cell Research, 17(1), 26–36.PubMedGoogle Scholar
  169. 169.
    Imanishi, J., Kamiyama, K., Iguchi, I., Kita, M., Sotozono, C., & Kinoshita, S. (2000). Growth factors: importance in wound healing and maintenance of transparency of the cornea. Progress in Retinal and Eye Research, 19(1), 113–129.PubMedGoogle Scholar
  170. 170.
    Moshiri, A., Close, J., & Reh, T. A. (2004). Retinal stem cells and regeneration. International Journal of Developmental Biology, 48(8–9), 1003–1014.PubMedGoogle Scholar
  171. 171.
    Das, A. V., James, J., Rahnenfuhrer, J., et al. (2005). Retinal properties and potential of the adult mammalian ciliary epithelium stem cells. Vision Research, 45(13), 1653–1666.PubMedGoogle Scholar
  172. 172.
    Ahmad, I., Das, A. V., James, J., Bhattacharya, S., & Zhao, X. (2004). Neural stem cells in the mammalian eye: types and regulation. Seminars in Cell & Developmental Biology, 15(1), 53–62.Google Scholar
  173. 173.
    Xu, H., Sta Iglesia, D. D., Kielczewski, J. L., et al. (2007). Xu Characteristics of progenitor cells derived from adult ciliary body in mouse, rat, and human eyes. Investigative Ophthalmology & Visual Science, 48(4), 1674–1682.Google Scholar
  174. 174.
    Whikehart, D. R., Parikh, C. H., Vaughn, A. V., et al. (2005). Evidence suggesting the existence of stem cells for the human corneal endothelium. Molecular Vision, 11, 816–824.PubMedGoogle Scholar
  175. 175.
    Pellegrini, G., Dellambra, E., Paterna, P., et al. (2004). Telomerase activity is sufficient to bypass replicative senescence in human limbal and conjunctival but not corneal keratinocytes. European Journal of Cell Biology, 83(11–12), 691–700.PubMedGoogle Scholar
  176. 176.
    Nadri, S., Soleimani, M., Kiani, J., Atashi, A., & Izadpanah, R. (2008). Multipotent mesenchymal stem cells from adult human eye conjunctiva stromal cells. Differentiation, in press.Google Scholar
  177. 177.
    Abe, T., Yoshida, M., Yoshioka, Y., et al. (2007). Iris pigment epithelial cell transplantation for degenerative retinal diseases. Progress in Retinal and Eye Research, 26(3), 302–321.PubMedGoogle Scholar
  178. 178.
    Das, A. V., Edakkot, S., Thoreson, W. B., James, J., Bhattacharya, S., & Ahmad, I. (2005). Membrane properties of retinal stem cells/progenitors. Progress in Retinal and Eye Research, 24(6), 663–681.PubMedGoogle Scholar
  179. 179.
    Ye, J., Song, Y. S., Kang, S. H., Yao, K., & Kim, J. C. (2004). Involvement of bone marrow-derived stem and progenitor cells in the pathogenesis of pterygium. Eye, 18(8), 839–843.PubMedGoogle Scholar
  180. 180.
    Chen, Y. T., Li, W., Hayashida, Y., et al. (2007). Human amniotic epithelial cells as novel feeder layers for promoting ex vivo expansion of limbal epithelial progenitor cells. Stem Cells, 25, 1995–2005.PubMedGoogle Scholar
  181. 181.
    Ye, J., Kook, K. H., & Yao, K. (2006). Temporary amniotic membrane patch for the treatment of primary pterygium: mechanisms of reducing the recurrence rate. Graefe’s Archive for Clinical and Experimental Ophthalmology, 244(5), 583–588.PubMedGoogle Scholar
  182. 182.
    Nakamura, T., Inatomi, T., Sotozono, C., Koizumi, N., & Kinoshita, S. (2004). Successful primary culture and autologous transplantation of corneal limbal epithelial cells from minimal biopsy for unilateral severe ocular surface disease. Acta Ophthalmologica Scandinavica, 82(4), 468–471, August.PubMedGoogle Scholar
  183. 183.
    Ma, Y., Xu, Y., Xiao, Z., Yang, W., et al. (2006). Reconstruction of chemically burned rat corneal surface by bone marrow-derived human mesenchymal stem cells. Stem Cells, 24(2), 315–321.PubMedGoogle Scholar
  184. 184.
    Ahmad, S., Stewart, R., Yung, S., et al. (2007). Differentiation of human embryonic stem cells into corneal epithelial-like cells by in vitro replication of the corneal epithelial stem cell niche. Stem Cells, 25(5), 1145–1155.PubMedGoogle Scholar
  185. 185.
    Zhao, X., & Liu, J. (2002). Differentiation of embryonic stem cells into retinal neurons. Biochemical and Biophysical Research Communications, 297(2), 177–184.PubMedGoogle Scholar
  186. 186.
    Burke, Z. D., Thowfeequ, S., Peran, M., & Tosh, D. (2007). Stem cells in the adult pancreas and liver. Biochemical Journal, 404(2), 169–178.PubMedGoogle Scholar
  187. 187.
    Barker, N., van Es, J. H., Kuipers, J., et al. (2007). Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature, 449(7165), 1003–1007.PubMedGoogle Scholar
  188. 188.
    Yen, T. H., & Wright, N. A. (2006). The gastrointestinal tract stem cell niche. Stem Cell Review, 2(3), 203–212.Google Scholar
  189. 189.
    Modlin, I. M., Kidd, M., Lye, K. D., & Wright, N. A. (2003). Gastric stem cells: an update. Keio Journal of Medicine, 52(2), 134–137.PubMedGoogle Scholar
  190. 190.
    Katoh, Y., & Katoh, M. (2006). Hedgehog signaling pathway and gastrointestinal stem cell signaling network (review). International Journal of Molecular Medicine, 18(6), 1019–1023.PubMedGoogle Scholar
  191. 191.
    Aicher, A., & Heeschen, C. (2007). Nonbone marrow-derived endothelial progenitor cells: what is their exact location? Circulation Research, 101(9), e102.PubMedGoogle Scholar
  192. 192.
    Schier, S., & Wright, N. A. (2005). Stem cell relationships and the origin of gastrointestinal cancer. Oncology, 69, 9–13.PubMedGoogle Scholar
  193. 193.
    Andoh, A., Bamba, S., Brittan, M., Fujiyama, Y., & Wright, N. A. (2007). Role of intestinal subepithelial myofibroblasts in inflammation and regenerative response in the gut. Pharmacology & Therapeutics, 114(1), 94–106.Google Scholar
  194. 194.
    Alison, M. R., Vig, P., Russo, F., et al. (2004). Hepatic stem cells: from inside and outside the liver? Cell Proliferation, 37(1), 1–21.PubMedGoogle Scholar
  195. 195.
    Fausto, N., Campbell, J. S., & Riehle, K. J. (2006). Liver regeneration. Hepatology, 43(2 Suppl 1), S45–S53.PubMedGoogle Scholar
  196. 196.
    Cantz, T., Manns, M. P., & Ott, M. (2008). Stem cells in liver regeneration and therapy. Cell & Tissue Research, 331(1), 271–282.Google Scholar
  197. 197.
    Roskams, T. (2006). Liver stem cells and their implication in hepatocellular and cholangiocarcinoma. Oncogene, 25(27), 3818–3822.PubMedGoogle Scholar
  198. 198.
    Yovchev, M. I., Grozdanov, P. N., Joseph, B., Gupta, S., & Dabeva, M. D. (2007). Novel hepatic progenitor cell surface markers in the adult rat liver. Hepatology, 45(1), 139–149.PubMedGoogle Scholar
  199. 199.
    Chen, Y. K., Zhao, X. X., Li, J. G., Lang, S., & Wang, Y. M. (2006). Ductular proliferation in liver tissues with severe chronic hepatitis B: an immunohistochemical study. World Journal of Gastroenterology, 12(9), 1443–1446.PubMedGoogle Scholar
  200. 200.
    Koenig, S., Probst, I., Becker, H., & Krause, P. (2006). Zonal hierarchy of differentiation markers and nestin expression during oval cell mediated rat liver regeneration. Histochemistry and Cell Biology, 126(6), 723–734.PubMedGoogle Scholar
  201. 201.
    Oertel, M., Menthena, A., Chen, Y. Q., & Shafritz, D. A. (2006). Properties of cryopreserved fetal liver stem/progenitor cells that exhibit long-term repopulation of the normal rat liver. Stem Cells, 24(10), 2244–2251.PubMedGoogle Scholar
  202. 202.
    Oertel, M., Menthena, A., Chen, Y. Q., & Shafritz, D. A. (2007). Comparison of hepatic properties and transplantation of Thy-1(+) and Thy-1(-) cells isolated from embryonic day 14 rat fetal liver. Hepatology, 46(4), 1236–1245.PubMedGoogle Scholar
  203. 203.
    Dezso, K., Jelnes, P., Laszlo, V., et al. (2007). Thy-1 is expressed in hepatic myofibroblasts and not oval cells in stem cell-mediated liver regeneration. American Journal of Pathology, 171(5), 1529–1537.PubMedGoogle Scholar
  204. 204.
    Herrera, M. B., Bruno, S., Buttiglieri, S., et al. (2006). Isolation and characterization of a stem cell population from adult human liver. Stem Cells, 24(12), 2840–2850.PubMedGoogle Scholar
  205. 205.
    Dorrell, C., & Grompe, M. (2005). Liver repair by intra- and extrahepatic progenitors. Stem Cell Review, 1(1), 61–64.Google Scholar
  206. 206.
    Rountree, C. B., Wang, X., Ge, S., et al. (2007). Bone marrow fails to differentiate into liver epithelium during murine development and regeneration. Hepatology, 45(5), 1250–1260.PubMedGoogle Scholar
  207. 207.
    Libbrecht, L., Desmet, V., Van, D. B., & Roskams, T. (2000). The immunohistochemical phenotype of dysplastic foci in human liver: correlation with putative progenitor cells. Journal of Hepatology, 33(1), 76–84.PubMedGoogle Scholar
  208. 208.
    Chen, Q. R., Xiang, J., Liao, B., et al. (2007). Evolutive characters of oval cells in experimental hepatocarcinogenesis. AiZheng, 26(7), 719–723.PubMedGoogle Scholar
  209. 209.
    Alison, M. R. (2006). Liver cancer: a disease of stem cells? Panminerva Medicaica, 48(3), 165–174.Google Scholar
  210. 210.
    Bouwens, L., & Rooman, I. (2005). Regulation of pancreatic beta-cell mass. Physiological Reviews, 85(4), 1255–1270.PubMedGoogle Scholar
  211. 211.
    Nikolova, G., Jabs, N., Konstantinova, I., et al. (2006). The vascular basement membrane: a niche for insulin gene expression and Beta cell proliferation. Developmental Cell, 10(3), 397–405.PubMedGoogle Scholar
  212. 212.
    Seaberg, R. M., Smukler, S. R., Kieffer, T. J., et al. (2004). Clonal identification of multipotent precursors from adult mouse pancreas that generate neural and pancreatic lineages. Nature Biotechnology, 22(9), 1115–1124.PubMedGoogle Scholar
  213. 213.
    Wang, G. S., Rosenberg, L., & Scott, F. W. (2005). Tubular complexes as a source for islet neogenesis in the pancreas of diabetes-prone BB rats. Laboratory Investigation, 85(5), 675–688.PubMedGoogle Scholar
  214. 214.
    D’Alessandro, J. S., Lu, K., Fung, B. P., Colman, A., & Clarke, D. L. (2007). Rapid and efficient in vitro generation of pancreatic islet progenitor cells from nonendocrine epithelial cells in the adult human pancreas. Stem Cells Development, 16(1), 75–89.Google Scholar
  215. 215.
    Lin, H. T., Chiou, S. H., Kao, C. L., et al. (2006). Characterization of pancreatic stem cells derived from adult human pancreas ducts by fluorescence activated cell sorting. World Journal of Gastroenterol, 12(28), 4529–4535.Google Scholar
  216. 216.
    Gangaram-Panday, S. T., Faas, M. M., & de Vos, P. (2007). Towards stem-cell therapy in the endocrine pancreas. Trends Molecular Medicine, 13(4), 164–173.Google Scholar
  217. 217.
    Lock, L. T., & Tzanakakis, E. S. (2007). Stem/Progenitor cell sources of insulin-producing cells for the treatment of diabetes. Tissue Engineering, 13(7), 1399–1412.PubMedGoogle Scholar
  218. 218.
    Yao, S., Chen, S., Clark, J., et al. (2006). Long-term self-renewal and directed differentiation of human embryonic stem cells in chemically defined conditions. Proceedings of the National Academy of Sciences of the United States of America, 103, 6907–6912.PubMedGoogle Scholar
  219. 219.
    Shim, J. H., Kim, S. E., Woo, D. H., et al. (2007). Directed differentiation of human embryonic stem cells towards a pancreatic cell fate. Diabetologia, 50(6), 1228–1238.PubMedGoogle Scholar
  220. 220.
    Kim, S., Shin, J. S., Kim, H. J., Fisher, R. C., Lee, M. J., & Kim, C. W. (2007). Streptozotocin-induced diabetes can be reversed by hepatic oval cell activation through hepatic transdifferentiation and pancreatic islet regeneration. Laboratory Investigation, 87(7), 702–712.PubMedGoogle Scholar
  221. 221.
    Urban, V. S., Kiss, J., Kovacs, J., et al. (2008). Mesenchymal stem cells cooperate with bone marrow cells in therapy of diabetes. Stem Cells, 26(1), 244–253.PubMedGoogle Scholar
  222. 222.
    Omary, M. B., Lugea, A., Lowe, A. W., & Pandol, S. J. (2007). The pancreatic stellate cell: a star on the rise in pancreatic diseases. Journal of Clinical Investigation, 117(1), 50–59.PubMedGoogle Scholar
  223. 223.
    Kleger, A., Busch, T., Liebau, S., et al. (2007). The bioactive lipid sphingosylphosphorylcholine induces differentiation of mouse embryonic stem cells and human promyelocytic leukaemia cells. Cell Signal, 19(2), 367–377.PubMedGoogle Scholar
  224. 224.
    Ghods, A. J., Irvin, D., Liu, G., et al. (2007). Spheres isolated from 9L gliosarcoma rat cell line possess chemoresistant and aggressive cancer stem-like cells. Stem Cells, 25(7), 1645–1653.PubMedGoogle Scholar
  225. 225.
    Peters, B. A., Diaz, L. A., Polyak, K., et al. (2005). Contribution of bone marrow-derived endothelial cells to human tumor vasculature. Natural Medicines, 11(3), 261–262.Google Scholar
  226. 226.
    Kaplan, R. N., Riba, R. D., Zacharoulis, S., et al. (2005). VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature, 438(7069), 820–827.PubMedGoogle Scholar
  227. 227.
    Ganss, R. (2006). Tumor stroma fosters neovascularization by recruitment of progenitor cells into the tumor bed. Journal of Cellular and Molecular Medicine, 10(4), 857–865.PubMedGoogle Scholar
  228. 228.
    Kalluri, R., & Zeisberg, M. (2006). Fibroblasts in cancer. Nature Reviews Cancer, 6(5), 392–401.PubMedGoogle Scholar
  229. 229.
    Feldmann, G., Dhara, S., Fendrich, V., et al. (2007). Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases: a new paradigm for combination therapy in solid cancers. Cancer Research, 67(5), 2187–2196.PubMedGoogle Scholar
  230. 230.
    Calabrese, C., Poppleton, H., Kocak, M., et al. (2007). A perivascular niche for brain tumor stem cells. Cancer Cell, 11(1), 69–82.PubMedGoogle Scholar
  231. 231.
    Yu, J. J., Sun, X., Yuan, X., Lee, J. W., Snyder, E. Y., & Yu, J. S. (2006). Immunomodulatory neural stem cells for brain tumour therapy. Expert Opinion on Biological Therapy, 6(12), 1255–1262.PubMedGoogle Scholar
  232. 232.
    Mapara, K. Y., Stevenson, C. B., Thompson, R. C., & Ehtesham, M. (2007). Stem cells as vehicles for the treatment of brain cancer. Neurosurgery Clinics of North America, 18(1), 71–80.PubMedGoogle Scholar
  233. 233.
    Muller, F. J., Snyder, E. Y., & Loring, J. F. (2006). Gene therapy: can neural stem cells deliver? Nature Reviews. Neuroscience, 7(1), 75–84.PubMedGoogle Scholar
  234. 234.
    Aboody, K. S., Bush, R. A., Garcia, E., et al. (2006). Development of a tumor-selective approach to treat metastatic cancer. PLoS ONE, 1, e23.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2008

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular BiologyUniversity of Nebraska Medical CenterOmahaUSA
  2. 2.Department of Pathology and MicrobiologyUniversity of Nebraska Medical CenterOmahaUSA
  3. 3.Eppley Institute for Cancer and Allied DiseasesUniversity of Nebraska Medical CenterOmahaUSA

Personalised recommendations