Stem Cell Reviews

, Volume 3, Issue 4, pp 249–255 | Cite as

Stem Cells and Cancer: An Overview

  • Kevin M. Sales
  • Marc C. Winslet
  • Alexander M. SeifalianEmail author


Definite evidence of the importance of cancer stem cells in the progression of cancer has now come to light. Key markers of these cells have been identified in many solid tumours as well as leukaemias. Specific studies modelling the tumour induction of specific cells isolated by surface antigens such as CD44 have demonstrated that these cells are not only present in tumours but that they are the key units in their tumourgenecity. These findings provide useful insight for disease progression, treatment and metastasis. The wide variety of proposed markers, and their similarity to endothelial progenitor cells found in angiogenesis, complicates these studies. Definite proof falls only in the induction of tumours in vivo. Here we review the developments in cancer stem cells and the markers that have been found for these cells.


Cancer Stem cells Tumour 


  1. 1.
    Hatfield, S. D., Shcherbata, H. R., Fischer, K. A., Nakahara, K., Carthew, R. W., & Ruohola-Baker, H. (2005). Stem cell division is regulated by the microRNA pathway. Nature, 435, 974–978.PubMedCrossRefGoogle Scholar
  2. 2.
    Jiang, Y., Jahagirdar, B. N., Reinhardt, R. L., Schwartz, R. E., Keene, C. D., Ortiz-Gonzalez, X. R., et al. (2002). Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 418, 41–49.PubMedCrossRefGoogle Scholar
  3. 3.
    Kim, C. F., Jackson, E. L., Woolfenden, A. E., Lawrence, S., Babar, I., Vogel, S., et al. (2005). Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell, 121, 823–835.PubMedCrossRefGoogle Scholar
  4. 4.
    Simonsen, J. L., Rosada, C., Serakinci, N., Justesen, J., Stenderup, K., Rattan, S. I., et al. (2002). Telomerase expression extends the proliferative life-span and maintains the osteogenic potential of human bone marrow stromal cells. Nature Biotechnology, 20, 592–596.PubMedCrossRefGoogle Scholar
  5. 5.
    Dick, J. E. (2003). Breast cancer stem cells revealed. Proceedings of the National Academy of Sciences of the United States of America, 100, 3547–3549.PubMedCrossRefGoogle Scholar
  6. 6.
    Reya, T., Morrison, S. J., Clarke, M. F., & Weissman, I. L. (2001). Stem cells, cancer, and cancer stem cells. Nature, 414, 105–111.PubMedCrossRefGoogle Scholar
  7. 7.
    Park, C. H., Bergsagel, D. E., & McCulloch, E. A. (1971). Mouse myeloma tumor stem cells: A primary cell culture assay. Journal of the National Cancer Institute, 46, 411–422.PubMedGoogle Scholar
  8. 8.
    Bonnet, D., & Dick, J. E. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Natural Medicines, 3, 730–737.CrossRefGoogle Scholar
  9. 9.
    Al Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., & Clarke, M. F. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 100, 3983–3988.PubMedCrossRefGoogle Scholar
  10. 10.
    Chiba, T., Kita, K., Zheng, Y. W., Yokosuka, O., Saisho, H., Iwama, A., et al. (2006). Side population purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties. Hepatology, 44, 240–251.PubMedCrossRefGoogle Scholar
  11. 11.
    Balic, M., Lin, H., Young, L., Hawes, D., Giuliano, A., McNamara, G., et al. (2006). Most early disseminated cancer cells detected in bone marrow of breast cancer patients have a putative breast cancer stem cell phenotype. Clinical Cancer Research, 12, 5615–5621.PubMedCrossRefGoogle Scholar
  12. 12.
    Kruger, J. A., Kaplan, C. D., Luo, Y., Zhou, H., Markowitz, D., Xiang, R., et al. (2006). Characterization of stem cell-like cancer cells in immune-competent mice. Blood, 108, 3906–3912.PubMedCrossRefGoogle Scholar
  13. 13.
    Knudson Jr., A. G., Strong, L. C., & Anderson, D. E. (1973). Heredity and cancer in man. Progress in Medical Genetics, 9, 113–158.PubMedGoogle Scholar
  14. 14.
    Morrison, S. J., Qian, D., Jerabek, L., Thiel, B. A., Park, I. K., Ford, P. S., et al. (2002). A genetic determinant that specifically regulates the frequency of hematopoietic stem cells. Journal of Immunology, 168, 635–642.Google Scholar
  15. 15.
    Al Hajj, M., Becker, M. W., Wicha, M., Weissman, I., & Clarke, M. F. (2004). Therapeutic implications of cancer stem cells. Current Opinion in Genetics and Development, 14, 43–47.PubMedCrossRefGoogle Scholar
  16. 16.
    Wang, J. C., & Dick, J. E. (2005). Cancer stem cells: Lessons from leukemia. Trends in Cell Biology, 15, 494–501.PubMedCrossRefGoogle Scholar
  17. 17.
    Cozzio, A., Passegue, E., Ayton, P. M., Karsunky, H., Cleary, M. L., & Weissman, I. L. (2003). Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes & Development, 17, 3029–3035.CrossRefGoogle Scholar
  18. 18.
    Weissman, I. L. (2005). Normal and neoplastic stem cells. Novartis Foundation Symposium, 265, 35–50.PubMedGoogle Scholar
  19. 19.
    Jamieson, C. H., Ailles, L. E., Dylla, S. J., Muijtjens, M., Jones, C., Zehnder, J. L., et al. (2004). Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. New England Journal of Medicine, 351, 657–667.PubMedCrossRefGoogle Scholar
  20. 20.
    Galli, R., Binda, E., Orfanelli, U., Cipelletti, B., Gritti, A., De Vitis, S., et al. (2004). Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Research, 64, 7011–7021.PubMedCrossRefGoogle Scholar
  21. 21.
    Yuan, X., Curtin, J., Xiong, Y., Liu, G., Waschsmann-Hogiu, S., Farkas, D. L., et al. (2004). Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene, 23, 9392–9400.PubMedCrossRefGoogle Scholar
  22. 22.
    Singh, S. K., Hawkins, C., Clarke, I. D., Squire, J. A., Bayani, J., Hide, T., et al. (2004). Identification of human brain tumour initiating cells. Nature, 432, 396–401.PubMedCrossRefGoogle Scholar
  23. 23.
    Xin, L., Lawson, D. A., & Witte, O. N. (2005). The Sca-1 cell surface marker enriches for a prostate-regenerating cell subpopulation that can initiate prostate tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 102, 6942–6947.PubMedCrossRefGoogle Scholar
  24. 24.
    Stockler, M., Wilcken, N. R., Ghersi, D., & Simes, R. J. (2000). Systematic reviews of chemotherapy and endocrine therapy in metastatic breast cancer. Cancer Treatment Reviews, 26, 151–168.PubMedCrossRefGoogle Scholar
  25. 25.
    Lippman, M. E. (2000). High-dose chemotherapy plus autologous bone marrow transplantation for metastatic breast cancer. New England Journal of Medicine, 342, 1119–1120.PubMedCrossRefGoogle Scholar
  26. 26.
    Groszer, M., Erickson, R., Scripture-Adams, D. D., Lesche, R., Trumpp, A., Zack, J. A., et al. (2001). Negative regulation of neural stem/progenitor cell proliferation by the Pten tumor suppressor gene in vivo. Science, 294, 2186–2189.PubMedCrossRefGoogle Scholar
  27. 27.
    Park, I. K., Qian, D., Kiel, M., Becker, M. W., Pihalja, M., Weissman, I. L., et al. (2003). Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature, 423, 302–305.PubMedCrossRefGoogle Scholar
  28. 28.
    Costello, R. T., Mallet, F., Gaugler, B., Sainty, D., Arnoulet, C., Gastaut, J. A., et al. (2000). Human acute myeloid leukemia CD34+/. Cancer Research, 60, 4403–4411.PubMedGoogle Scholar
  29. 29.
    Guzman, M. L., Swiderski, C. F., Howard, D. S., Grimes, B. A., Rossi, R. M., Szilvassy, S. J., et al. (2002). Preferential induction of apoptosis for primary human leukemic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 99, 16220–16225.PubMedCrossRefGoogle Scholar
  30. 30.
    Blair, A., Hogge, D. E., Ailles, L. E., Lansdorp, P. M., & Sutherland, H. J. (1997). Lack of expression of Thy-1 (CD90) on acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo. Blood, 89, 3104–3112.PubMedGoogle Scholar
  31. 31.
    Blair, A., & Sutherland, H. J. (2000). Primitive acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo lack surface expression of c-kit (CD117). Experimental Hematology, 28, 660–671.PubMedCrossRefGoogle Scholar
  32. 32.
    Druker, B. J., Tamura, S., Buchdunger, E., Ohno, S., Segal, G. M., Fanning, S., et al. (1996). Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Natural Medicines, 2, 561–566.CrossRefGoogle Scholar
  33. 33.
    O’Brien, S. G., Guilhot, F., Larson, R. A., Gathmann, I., Baccarani, M., Cervantes, F., et al. (2003). Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. New England Journal of Medicine, 348, 994–1004.PubMedCrossRefGoogle Scholar
  34. 34.
    Branford, S., Hughes, T. P., & Rudzki, Z. (1999). Monitoring chronic myeloid leukaemia therapy by real-time quantitative PCR in blood is a reliable alternative to bone marrow cytogenetics. British Journal of Haematology, 107, 587–599.PubMedCrossRefGoogle Scholar
  35. 35.
    Berman, D. M., Karhadkar, S. S., Hallahan, A. R., Pritchard, J. I., Eberhart, C. G., Watkins, D. N., et al. (2002). Medulloblastoma growth inhibition by hedgehog pathway blockade. Science, 297, 1559–1561.PubMedCrossRefGoogle Scholar
  36. 36.
    Beachy, P. A., Karhadkar, S. S., & Berman, D. M. (2004). Tissue repair and stem cell renewal in carcinogenesis. Nature, 432, 324–331.PubMedCrossRefGoogle Scholar
  37. 37.
    Clement, V., Sanchez, P., de Tribolet, N., Radovanovic, I., & Altaba, A. (2007). HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Current Biology, 17, 165–172.PubMedCrossRefGoogle Scholar
  38. 38.
    Sagar, J., Chaib, B., Sales, K., Winslet, M., & Seifalian, A. (2007). Role of stem cells in cancer therapy and cancer stem cells: A review. Cancer Cell International, 7, 9.PubMedCrossRefGoogle Scholar
  39. 39.
    Studeny, M., Marini, F. C., Champlin, R. E., Zompetta, C., Fidler, I. J., & Andreeff, M. (2002). Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Research, 62, 3603–3608.PubMedGoogle Scholar
  40. 40.
    Anderson, S. A., Glod, J., Arbab, A. S., Noel, M., Ashari, P., Fine, H. A., et al. (2005). Noninvasive MR imaging of magnetically labeled stem cells to directly identify neovasculature in a glioma model. Blood, 105, 420–425.PubMedCrossRefGoogle Scholar
  41. 41.
    Nakamizo, A., Marini, F., Amano, T., Khan, A., Studeny, M., Gumin, J., et al. (2005). Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Research, 65, 3307–3318.PubMedGoogle Scholar
  42. 42.
    Chawla-Sarkar, M., Leaman, D. W., & Borden, E. C. (2001). Preferential induction of apoptosis by interferon (IFN)-beta compared with IFN-alpha2: Correlation with TRAIL/Apo2L induction in melanoma cell lines. Clinical Cancer Research, 7, 1821–1831.PubMedGoogle Scholar
  43. 43.
    Atlasi, Y., Mowla, S. J., Ziaee, S. A., & Bahrami, A. R. (2007). OCT-4, an embryonic stem cell marker, is highly expressed in bladder cancer. International Journal of Cancer, 120, 1598–1602.CrossRefGoogle Scholar
  44. 44.
    Gibbs, C. P., Kukekov, V. G., Reith, J. D., Tchigrinova, O., Suslov, O. N., Scott, E. W., et al. (2005). Stem-like cells in bone sarcomas: Implications for tumorigenesis. Neoplasia, 7, 967–976.PubMedCrossRefGoogle Scholar
  45. 45.
    Donnenberg, V. S., Landreneau R. J., & Donnenberg, A. D. (2007). Tumorigenic stem and progenitor cells: Implications for the therapeutic index of anti-cancer agents. Journal of Controlled Release, 122, 385–391.Google Scholar
  46. 46.
    Dalerba, P., Dylla, S. J., Park, I. K., Liu, R., Wang, X., Cho, R. W., et al. (2007). Phenotypic characterization of human colorectal cancer stem cells. Proceedings of the National Academy of Sciences of the United States of America, 104, 10158–10163.PubMedCrossRefGoogle Scholar
  47. 47.
    Dontu, G., Liu, S., & Wicha, M. S. (2005). Stem cells in mammary development and carcinogenesis: Implications for prevention and treatment. Stem Cell Review, 1, 207–213.CrossRefGoogle Scholar
  48. 48.
    Liu, S., Dontu, G., Mantle, I. D., Patel, S., Ahn, N. S., Jackson, K. W., et al. (2006). Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Research, 66, 6063–6071.PubMedCrossRefGoogle Scholar
  49. 49.
    Tang, C., Chua, C. L., & Ang, B. T. (2007). Insights into the cancer stem cell model of glioma tumorigenesis. Annals of the Academy of Medicine, Singapore, 36, 352–356.PubMedGoogle Scholar
  50. 50.
    Haraguchi, N., Inoue, H., Tanaka, F., Mimori, K., Utsunomiya, T., Sasaki, A., et al. (2006). Cancer stem cells in human gastrointestinal cancers. Human Cell, 19, 24–29.PubMedCrossRefGoogle Scholar
  51. 51.
    Park, D. M., Li, J., Okamoto, H., Akeju, O., Kim, S. H., Lubensky, I., et al. (2007). N-CoR pathway targeting induces glioblastoma derived cancer stem cell differentiation. Cell Cycle, 6, 467–470.PubMedGoogle Scholar
  52. 52.
    Kvinlaug, B. T., & Huntly, B. J. (2007). Targeting cancer stem cells. Expert Opinion on Therapeutic Targets, 11, 915–927.PubMedCrossRefGoogle Scholar
  53. 53.
    Prince, M. E., Sivanandan, R., Kaczorowski, A., Wolf, G. T., Kaplan, M. J., Dalerba, P., et al. (2007). Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 104, 973–978.PubMedCrossRefGoogle Scholar
  54. 54.
    Phatak, P., Cookson, J. C., Dai, F., Smith, V., Gartenhaus, R. B., Stevens, M. F., et al. (2007). Telomere uncapping by the G-quadruplex ligand RHPS4 inhibits clonogenic tumour cell growth in vitro and in vivo consistent with a cancer stem cell targeting mechanism. British Journal of Cancer, 96, 1223–1233.PubMedCrossRefGoogle Scholar
  55. 55.
    Ishikawa, K., Sasaki, A., Haraguchi, N., Yoshikawa, Y., & Mori, M. (2007). A case of an alpha-fetoprotein-producing intrahepatic cholangiocarcinoma suggests probable cancer stem cell origin. Oncologist, 12, 320–324.PubMedCrossRefGoogle Scholar
  56. 56.
    Sengupta, A., Banerjee, D., Chandra, S., Banerji, S. K., Ghosh, R., Roy, R., et al. (2007). Deregulation and cross talk among Sonic hedgehog, Wnt, Hox and Notch signaling in chronic myeloid leukemia progression. Leukemia, 21, 949–955.PubMedCrossRefGoogle Scholar
  57. 57.
    Krivtsov, A. V., Twomey, D., Feng, Z., Stubbs, M. C., Wang, Y., Faber, J., et al. (2006). Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature, 442, 818–822.PubMedCrossRefGoogle Scholar
  58. 58.
    Nam, C. H., & Rabbitts, T. H. (2006). The role of LMO2 in development and in T cell leukemia after chromosomal translocation or retroviral insertion. Molecular Therapy, 13, 15–25.PubMedCrossRefGoogle Scholar
  59. 59.
    Lam, W. K., & Watkins, D. N. (2007). Lung cancer: Future directions. Respirology, 12, 471–477.PubMedCrossRefGoogle Scholar
  60. 60.
    Fang, D., Nguyen, T. K., Leishear, K., Finko, R., Kulp, A. N., Hotz, S., et al. (2005). A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Research, 65, 9328–9337.PubMedCrossRefGoogle Scholar
  61. 61.
    Peacock, C. D., Wang, Q., Gesell, G. S., Corcoran-Schwartz, I. M., Jones, E., Kim, J., et al. (2007). Hedgehog signaling maintains a tumor stem cell compartment in multiple myeloma. Proceedings of the National Academy of Sciences of the United States of America, 104, 4048–4053.PubMedCrossRefGoogle Scholar
  62. 62.
    Panagiotakos, G., & Tabar, V. (2007). Brain tumor stem cells. Current Neurology and Neuroscience Reports, 7, 215–220.PubMedCrossRefGoogle Scholar
  63. 63.
    Heffron, C. C., Gallagher, M. F., Guenther, S., Sherlock, J., Henfrey, R., Martin, C., et al. (2007). Global mRNA analysis to determine a transcriptome profile of cancer stemness in a mouse model. Anticancer Research, 27, 1319–1324.PubMedGoogle Scholar
  64. 64.
    Wang, J., Guo, L. P., Chen, L. Z., Zeng, Y. X., & Lu, S. H. (2007). Identification of cancer stem cell-like side population cells in human nasopharyngeal carcinoma cell line. Cancer Research, 67, 3716–3724.PubMedCrossRefGoogle Scholar
  65. 65.
    Collins, A. T., & Maitland, N. J. (2006). Prostate cancer stem cells. European Journal of Cancer, 42, 1213–1218.PubMedCrossRefGoogle Scholar
  66. 66.
    Collins, A. T., Berry, P. A., Hyde, C., Stower, M. J., & Maitland, N. J. (2005). Prospective identification of tumorigenic prostate cancer stem cells. Cancer Research, 65, 10946–10951.PubMedCrossRefGoogle Scholar
  67. 67.
    Rizzo, S., Attard, G., & Hudson, D. L. (2005). Prostate epithelial stem cells. Cell Proliferation, 38, 363–374.PubMedCrossRefGoogle Scholar
  68. 68.
    Mohan, A., Kandalam, M., Ramkumar, H. L., Gopal, L., & Krishnakumar, S. (2006). Stem cell markers: ABCG2 and MCM2 expression in retinoblastoma. British Journal of Ophthalmology, 90, 889–893.PubMedCrossRefGoogle Scholar
  69. 69.
    Seigel, G. M., Campbell, L. M., Narayan, M., & Gonzalez-Fernandez, F. (2005). Cancer stem cell characteristics in retinoblastoma. Molecular Vision, 11, 729–737.PubMedGoogle Scholar
  70. 70.
    Gutova, M., Najbauer, J., Gevorgyan, A., Metz, M. Z., Weng, Y., Shih, C. C., et al. (2007). Identification of uPAR-positive Chemoresistant Cells in Small Cell Lung Cancer. PLoS ONE, 2, e243.PubMedCrossRefGoogle Scholar
  71. 71.
    Diabira, S., & Morandi, X. (2007). Gliomagenesis and neural stem cells: Key role of hypoxia and concept of tumor “neo-niche.” Medical Hypotheses (in press).Google Scholar
  72. 72.
    Zhang, P., Zuo, H., Ozaki, T., Nakagomi, N., & Kakudo, K. (2006). Cancer stem cell hypothesis in thyroid cancer. Pathology International, 56, 485–489.PubMedCrossRefGoogle Scholar
  73. 73.
    Pascal, L. E., Oudes, A. J., Petersen, T. W., Goo, Y. A., Walashek, L. S., True, L. D., et al. (2007). Molecular and cellular characterization of ABCG2 in the prostate. BMC Urology, 7, 6.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Kevin M. Sales
    • 1
  • Marc C. Winslet
    • 1
    • 2
  • Alexander M. Seifalian
    • 1
    • 3
    Email author
  1. 1.Biomaterials & Tissue Engineering Centre, Academic Division of Surgical and Interventional SciencesUniversity College LondonLondonUK
  2. 2.Royal Free Hampstead NHS Trust HospitalLondonUK
  3. 3.Nanotechnology & Tissue Repair in SurgeryUniversity College LondonLondonUK

Personalised recommendations