Stem Cell Reviews

, Volume 3, Issue 3, pp 226–237 | Cite as

Intrinsic Changes and Extrinsic Influences of Myogenic Stem Cell Function During Aging

  • Andrew S. Brack
  • Thomas A. RandoEmail author


The myogenic stem cell (satellite cell) is almost solely responsible for the remarkable regeneration of adult skeletal muscle fibers after injury. The availability and the functionality of satellite cells are the determinants of efficient muscle regeneration. During aging, the efficiency of muscle regeneration declines, suggesting that the functionality of satellite cells and their progeny may be altered. Satellite cells do not sit in isolation but rather are surrounded by, and influenced by, many extrinsic factors within the muscle tissue that can alter their functionality. These factors likely change during aging and impart both reversible and irreversible changes to the satellite cells and on their proliferating progeny. In this review, we discuss the possible mechanisms of impaired muscle regeneration with respect to the biology of satellite cells. Future studies that enhance our understanding of the interactions between stem cells and the environment in which they reside will offer promise for therapeutic applications in age-related diseases.


Stem cells Aging Muscle Satellite cell Wnt Niche 


  1. 1.
    Sadeh, M., Czyewski, K., & Stern, L. Z. (1985). Chronic myopathy induced by repeated bupivacaine injections. Journal of the Neurological Sciences, 67, 229–238.CrossRefPubMedGoogle Scholar
  2. 2.
    Carlson, B. M., & Faulkner, J. A. (1989). Muscle transplantation between young and old rats: age of host determines recovery. American Journal Physiology, 256, C1262–C1266.Google Scholar
  3. 3.
    McGeachie, J. K., & Grounds, M. D. (1995). Retarded myogenic cell replication in regenerating skeletal muscles of old mice: An autoradiographic study in young and old BALBc and SJL/J mice. Cell & Tissue Research, 280, 277–282.Google Scholar
  4. 4.
    Carlson, B. M., Dedkov, E. I., Borisov, A. B., & Faulkner, J. A. (2001). Skeletal muscle regeneration in very old rats. J Gerontol Ser A Biol Sci Med Sci, 56, B224–B233.Google Scholar
  5. 5.
    Conboy, I. M., Conboy, M. J., Smythe, G. M., & Rando, T. A. (2003). Notch-mediated restoration of regenerative potential to aged muscle. Science, 302, 1575–1577.CrossRefPubMedGoogle Scholar
  6. 6.
    Brack, A. S., Conboy, M. J., Roy, S., Lee, M., Kuo, C. J., Keller, C., et al. (2007). Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science, 317, 807–810.CrossRefPubMedGoogle Scholar
  7. 7.
    Hawke, T. J., & Garry, D. J. (2001). Myogenic satellite cells: Physiology to molecular biology. Journal Applied Physiology, 91, 534–551.Google Scholar
  8. 8.
    Chargé, S. B., & Rudnicki, M. A. (2004). Cellular and molecular regulation of muscle regeneration. Physiological Reviews, 84, 209–238.CrossRefPubMedGoogle Scholar
  9. 9.
    Zammit, P. S., Partridge, T. A., & Yablonka-Reuveni, Z. (2006). The skeletal muscle satellite cell: The stem cell that came in from the cold. Journal of Histochemistry and Cytochemistry, 54, 1177–1191.CrossRefPubMedGoogle Scholar
  10. 10.
    Mauro, A. (1961). Satellite cells of skeletal muscle fibers. Journal of Biophysical and Biochemical Cytology, 9, 493–495.PubMedCrossRefGoogle Scholar
  11. 11.
    Tamaki, T., Akatsuka, A., Ando, K., Nakamura, Y., Matsuzawa, H., Hotta, T., et al. (2002a). Identification of myogenic-endothelial progenitor cells in the interstitial spaces of skeletal muscle. Journal Cell Biology, 157, 571–577.CrossRefGoogle Scholar
  12. 12.
    Tamaki, T., Akatsuka, A., Yoshimura, S., Roy, R. R., & Edgerton, V. R. (2002b). New fiber formation in the interstitial spaces of rat skeletal muscle during postnatal growth. Journal of Histochemistry and Cytochemistry, 50, 1097–1111.PubMedGoogle Scholar
  13. 13.
    De Angelis, L., Berghella, L., Coletta, M., Lattanzi, L., Zanchi, M., Cusella-De Angelis, M. G., et al. (1999). Skeletal myogenic progenitors originating from embryonic dorsal aorta coexpress endothelial and myogenic markers and contribute to postnatal muscle growth and regeneration. Journal of Cell Biology, 147, 869–878.CrossRefPubMedGoogle Scholar
  14. 14.
    McKinney-Freeman, S. L., Jackson, K. A., Camargo, F. D., Ferrari, G., Mavilio, F., & Goodell, M. A. (2002). Muscle-derived hematopoietic stem cells are hematopoietic in origin. Proceedings of the National Academy of Sciences of the United States of America, 99, 1341–1346.CrossRefPubMedGoogle Scholar
  15. 15.
    Polesskaya, A., Seale, P., & Rudnicki, M. A. (2003). Wnt signaling induces the myogenic specification of resident CD45+ adult stem cells during muscle regeneration. Cell, 113, 841–852.CrossRefPubMedGoogle Scholar
  16. 16.
    Galvez, B. G., Sampaolesi, M., Brunelli, S., Covarello, D., Gavina, M., Rossi, B., et al. (2006). Complete repair of dystrophic skeletal muscle by mesoangioblasts with enhanced migration ability. Journal of Cell Biology, 174, 231–243.CrossRefPubMedGoogle Scholar
  17. 17.
    Zammit, P., & Beauchamp, J. (2001). The skeletal muscle satellite cell: Stem cell or son of stem cell? Differentiation, 68, 193–204.CrossRefPubMedGoogle Scholar
  18. 18.
    Beauchamp, J. R., Heslop, L., Yu, D. S., Tajbakhsh, S., Kelly, R. G., Wernig, A., et al. (2000). Expression of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells. Journal Cell Biology, 151, 1221–1234.CrossRefGoogle Scholar
  19. 19.
    Cornelison, D. D., Filla, M. S., Stanley, H. M., Rapraeger, A. C., & Olwin, B. B. (2001). Syndecan-3 and syndecan-4 specifically mark skeletal muscle satellite cells and are implicated in satellite cell maintenance and muscle regeneration. Developments in Biologicals, 239, 79–94.Google Scholar
  20. 20.
    Seale, P., Ishibashi, J., Scime, A., & Rudnicki, M. A. (2004). Pax7 Is necessary and sufficient for the myogenic specification of CD45(+):Sca1(+) stem cells from injured muscle. PLoS Biol, 2, E130.CrossRefPubMedGoogle Scholar
  21. 21.
    Fukada, S. I., Uezumi, A., Ikemoto, M., Masuda, S., Segawa, M., Tanimura, N., et al. (2007). Molecular signature of quiescent satellite cells in adult skeletal muscle. Stem Cells (in press).Google Scholar
  22. 22.
    Kuang, S., Charge, S. B., Seale, P., Huh, M., & Rudnicki, M. A. (2006). Distinct roles for Pax7 and Pax3 in adult regenerative myogenesis. Journal of Cell Biology, 172, 103–113.CrossRefPubMedGoogle Scholar
  23. 23.
    Kuang, S., Kuroda, K., Le, G. F., & Rudnicki, M. A. (2007). Asymmetric self-renewal and commitment of satellite stem cells in muscle. Cell, 129, 999–1010.CrossRefPubMedGoogle Scholar
  24. 24.
    Jackson, K. A., Mi, T., & Goodell, M. A. (1999). Hematopoietic potential of stem cells isolated from murine skeletal muscle. Proceedings of the National Academy of Sciences of the United States of America, 96, 14482–14486.CrossRefPubMedGoogle Scholar
  25. 25.
    Asakura, A., Seale, P., Girgis-Gabardo, A., & Rudnicki, M. A. (2002). Myogenic specification of side population cells in skeletal muscle. Journal of Cell Biology, 159, 123–134.CrossRefPubMedGoogle Scholar
  26. 26.
    Uezumi, A., Ojima, K., Fukada, S., Ikemoto, M., Masuda, S., Miyagoe-Suzuki, Y., et al. (2006). Functional heterogeneity of side population cells in skeletal muscle. Biochemical and biophysical research communications, 341, 864–873.CrossRefPubMedGoogle Scholar
  27. 27.
    Zammit, P. S., Heslop, L., Hudon, V., Rosenblatt, J. D., Tajbakhsh, S., Buckingham, M. E., et al. (2002). Kinetics of myoblast proliferation show that resident satellite cells are competent to fully regenerate skeletal muscle fibers. Experimental Cell Research, 281, 39–49.CrossRefPubMedGoogle Scholar
  28. 28.
    Brack, A. S., Bildsoe, H., & Hughes, S. M. (2005). Evidence that satellite cell decrement contributes to preferential decline in nuclear number from large fibres during murine age-related muscle atrophy. Journal Cell Science, 118, 4813–4821.CrossRefGoogle Scholar
  29. 29.
    Collins, C. A., Zammit, P. S., Ruiz, A. P., Morgan, J. E., & Partridge, T. A. (2007). A population of myogenic stem cells that survives skeletal muscle aging. Stem Cells, 25, 885–894.CrossRefPubMedGoogle Scholar
  30. 30.
    Schultz, E., Gibson, M. C., & Champion, T. (1978). Satellite cells are mitotically quiescent in mature mouse muscle: An EM and radioautographic study. Journal Experimental Zoology, 206, 451–456.CrossRefGoogle Scholar
  31. 31.
    Bischoff, R. (1975). Regeneration of single skeletal muscle fibers in vitro. Anatomical Record, 182, 215–235.CrossRefPubMedGoogle Scholar
  32. 32.
    Rosenblatt, J. D., Lunt, A. I., Parry, D. J., & Partridge, T. A. (1995). Culturing satellite cells from living single muscle fiber explants. In Vitro Cell Dev Biol, 31, 773–779.CrossRefGoogle Scholar
  33. 33.
    Collins, C. A., Olsen, I., Zammit, P. S., Heslop, L., Petrie, A., Partridge, T. A., et al. (2005). Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell, 122, 289–301.CrossRefPubMedGoogle Scholar
  34. 34.
    Cardasis, C. A., & Cooper, G. W. (1975). An analysis of nuclear numbers in individual muscle fibers during differentiation and growth: A satellite cell-muscle fiber growth unit. Journal Experimental Zoology, 191, 347–358.CrossRefGoogle Scholar
  35. 35.
    Shefer, G., Van de Mark, D. P., Richardson, J. B., & Yablonka-Reuveni, Z. (2006). Satellite-cell pool size does matter: Defining the myogenic potency of aging skeletal muscle. Developments in Biologicals, 294, 50–66.Google Scholar
  36. 36.
    Schultz, E., & Lipton, B. H. (1982). Skeletal muscle satellite cells: Changes in proliferation potential as a function of age. Mechanism of Ageing and Development, 20, 377–383.CrossRefGoogle Scholar
  37. 37.
    Bockhold, K. J., Rosenblatt, J. D., & Partridge, T. A. (1998). Aging normal and dystrophic mouse muscle: Analysis of myogenicity in cultures of living single fibers. Muscle Nerve, 21, 173–183.CrossRefPubMedGoogle Scholar
  38. 38.
    Roth, S. M., Martel, G. F., Ivey, F. M., Lemmer, J. T., Metter, E. J., Hurley, B. F., et al. (2000). Skeletal muscle satellite cell populations in healthy young and older men and women. Anatomical Record, 260, 351–358.CrossRefPubMedGoogle Scholar
  39. 39.
    Sajko, S., Kubinova, L., Cvetko, E., Kreft, M., Wernig, A., & Erzen, I. (2004). Frequency of M-cadherin-stained satellite cells declines in human muscles during aging. Journal of Histochemistry and Cytochemistry, 52, 179–185.PubMedGoogle Scholar
  40. 40.
    Gibson, M. C., & Schultz, E. (1983). Age-related differences in absolute numbers of skeletal muscle satellite cells. Muscle Nerve, 6, 574–580.CrossRefPubMedGoogle Scholar
  41. 41.
    Snow, M. H. (1977). The effects of aging on satellite cells in skeletal muscles of mice and rats. Cell & Tissue Research, 185, 399–408.Google Scholar
  42. 42.
    Conboy, I. M., Conboy, M. J., Wagers, A. J., Girma, E. R., Weissman, I. L., & Rando, T. A. (2005). Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature, 433, 760–764.CrossRefPubMedGoogle Scholar
  43. 43.
    Conboy, I. M., & Rando, T. A. (2005). Aging, stem cells and tissue regeneration: Lessons from muscle. Cell Cycle, 4, 407–410.PubMedGoogle Scholar
  44. 44.
    Bekaert, S., Derradji, H., & Baatout, S. (2004). Telomere biology in mammalian germ cells and during development. Developments in Biologicals, 274, 15–30.CrossRefGoogle Scholar
  45. 45.
    Campisi, J. (2001). From cells to organisms: Can we learn about aging from cells in culture? Experimental Gerontology, 36, 607–618.CrossRefPubMedGoogle Scholar
  46. 46.
    Decary, S., Mouly, V., Hamida, C. B., Sautet, A., Barbet, J. P., & Butler-Browne, G. S. (1997). Replicative potential and telomere length in human skeletal muscle: Implications for satellite cell-mediated gene therapy. Human Gene Therapy, 8, 1429–1438.PubMedGoogle Scholar
  47. 47.
    Decary, S., Hamida, C. B., Mouly, V., Barbet, J. P., Hentati, F., & Butler-Browne, G. S. (2000). Shorter telomeres in dystrophic muscle consistent with extensive regeneration in young children. Neuromuscular Disorders, 10, 113–120.CrossRefPubMedGoogle Scholar
  48. 48.
    Mouly, V., Aamiri, A., Bigot, A., Cooper, R. N., Di, D. S., Furling, D., et al. (2005). The mitotic clock in skeletal muscle regeneration, disease and cell mediated gene therapy. Acta Physiologica Scandinavica, 184, 3–15.CrossRefPubMedGoogle Scholar
  49. 49.
    Bortoli, S., Renault, V., Eveno, E., Auffray, C., Butler-Browne, G., & Pietu, G. (2003). Gene expression profiling of human satellite cells during muscular aging using cDNA arrays. Gene, 321, 145–154.CrossRefPubMedGoogle Scholar
  50. 50.
    Palacios, D., & Puri, P. L. (2006). The epigenetic network regulating muscle development and regeneration. Journal of Cellular Physiology, 207, 1–11.CrossRefPubMedGoogle Scholar
  51. 51.
    Chambers, S. M., Shaw, C. A., Gatza, C., Fisk, C. J., Donehower, L. A., & Goodell, M. A. (2007). Aging hematopoietic stem cells decline in function and exhibit epigenetic dysregulation. PLoS Biol, 5, e201.CrossRefPubMedGoogle Scholar
  52. 52.
    Barani, A. E., Durieux, A. C., Sabido, O., & Freyssenet, D. (2003). Age-related changes in the mitotic and metabolic characteristics of muscle-derived cells. Journal of Applied Physiology, 95, 2089–2098.PubMedGoogle Scholar
  53. 53.
    Conboy, I. M., & Rando, T. A. (2002). The regulation of Notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis. Developments in Cell Biology, 3, 397–409.Google Scholar
  54. 54.
    Chargé, S. B., Brack, A. S., & Hughes, S. M. (2002). Aging-related satellite cell differentiation defect occurs prematurely after Ski-induced muscle hypertrophy. American Journal of Physiology Cell Physiol, 283, C1228–C1241.Google Scholar
  55. 55.
    Asakura, A., Komaki, M., & Rudnicki, M. (2001). Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic, and adipogenic differentiation. Differentiation, 68, 245–253.CrossRefPubMedGoogle Scholar
  56. 56.
    Wada, M. R., Inagawa-Ogashiwa, M., Shimizu, S., Yasumoto, S., & Hashimoto, N. (2002). Generation of different fates from multipotent muscle stem cells. Development, 129, 2987–2995.PubMedGoogle Scholar
  57. 57.
    Shefer, G., Wleklinski-Lee, M., & Yablonka-Reuveni, Z. (2004). Skeletal muscle satellite cells can spontaneously enter an alternative mesenchymal pathway. Journal of Cell Science, 117, 5393–5404.CrossRefPubMedGoogle Scholar
  58. 58.
    Vertino, A. M., Taylor-Jones, J. M., Longo, K. A., Bearden, E. D., Lane, T. F., McGehee, R. E., Jr., et al. (2005). Wnt10b deficiency promotes coexpression of myogenic and adipogenic programs in myoblasts. Molecular Biology of the Cell, 16, 2039–2048.CrossRefPubMedGoogle Scholar
  59. 59.
    Taylor-Jones, J. M., McGehee, R. E., Rando, T. A., Lecka-Czernik, B., Lipschitz, D. A., & Peterson, C. A. (2002). Activation of an adipogenic program in adult myoblasts with age. Mechanism of Ageing and Development, 123, 649–661.CrossRefGoogle Scholar
  60. 60.
    Jejurikar, S. S., Henkelman, E. A., Cederna, P. S., Marcelo, C. L., Urbanchek, M. G., & Kuzon, W. M., Jr. (2006). Aging increases the susceptibility of skeletal muscle derived satellite cells to apoptosis. Experimental Gerontology, 41, 828–836.CrossRefPubMedGoogle Scholar
  61. 61.
    Sidorenko, A. V., Gubrii, I. B., Andrianova, L. F., Macsijuk, T. V., & Butenko, G. M. (1986). Functional rearrangement of lymphohemopoietic system in heterochronically parabiosed mice. Mechanism of Ageing and Development, 36, 41–56.CrossRefGoogle Scholar
  62. 62.
    Hirayama, R., Takemura, K., Nihei, Z., Ichikawa, W., Takagi, Y., Mishima, Y., et al. (1993). Differential effect of host microenvironment and systemic humoral factors on the implantation and the growth rate of metastatic tumor in parabiotic mice constructed between young and old mice. Mechanism of Ageing and Development, 71, 213–221.CrossRefGoogle Scholar
  63. 63.
    Fujino, H., Kohzuki, H., Takeda, I., Kiyooka, T., Miyasaka, T., Mohri, S., et al. (2005). Regression of capillary network in atrophied soleus muscle induced by hindlimb unweighting. Journal Applied Physiology, 98, 1407–1413.CrossRefGoogle Scholar
  64. 64.
    Ryan, N. A., Zwetsloot, K. A., Westerkamp, L. M., Hickner, R. C., Pofahl, W. E., & Gavin, T. P. (2006). Lower skeletal muscle capillarization and VEGF expression in aged vs. young men. Journal Applied Physiology, 100, 178–185.CrossRefGoogle Scholar
  65. 65.
    Goldspink, G., Fernandes, K., Williams, P. E., & Wells, D. J. (1994). Age-related changes in collagen gene expression in the muscles of mdx dystrophic and normal mice. Neuromuscular Disorders, 4, 183–191.CrossRefPubMedGoogle Scholar
  66. 66.
    Alexakis, C., Partridge, T., & Bou-Gharios, G. (2007). Implication of the satellite cell in dystrophic muscle fibrosis: A self perpetuating mechanism of collagen over-production. American Journal of Physiology Cell Physiology.Google Scholar
  67. 67.
    Engler, A. J., Sen, S., Sweeney, H. L., & Discher, D. E. (2006). Matrix elasticity directs stem cell lineage specification. Cell, 126, 677–689.CrossRefPubMedGoogle Scholar
  68. 68.
    Bischoff, R. (1986). A satellite cell mitogen from crushed adult muscle. Developments in Biologicals, 115, 140–147.Google Scholar
  69. 69.
    Chen, G., & Quinn, L. S. (1992). Partial characterization of skeletal myoblast mitogens in mouse crushed muscle extract. Journal of Cellular Physiology, 153, 563–574.CrossRefPubMedGoogle Scholar
  70. 70.
    Yablonka-Reuveni, Z., Seger, R., & Rivera, A. J. (1999). Fibroblast growth factor promotes recruitment of skeletal muscle satellite cells in young and old rats. Journal of Histochemistry and Cytochemistry, 47, 23–42.PubMedGoogle Scholar
  71. 71.
    Sheehan, S. M., Tatsumi, R., Temm-Grove, C. J., & Allen, R. E. (2000). HGF is an autocrine growth factor for skeletal muscle satellite cells in vitro. Muscle Nerve, 23, 239–245.CrossRefPubMedGoogle Scholar
  72. 72.
    Quinn, L. S., Ong, L. D., & Roeder, R. A. (1990). Paracrine control of myoblast proliferation and differentiation by fibroblasts. Developments in Biologicals, 140, 8–19.Google Scholar
  73. 73.
    Pampusch, M. S., Hembree, J. R., Hathaway, M. R., & Dayton, W. R. (1990). Effect of transforming growth factor beta on proliferation of L6 and embryonic porcine myogenic cells. Journal of Cellular Physiology, 143, 524–528.CrossRefPubMedGoogle Scholar
  74. 74.
    Vandenburgh, H. H., Sheff, M. F., & Zacks, S. I. (1984). Soluble age-related factors from skeletal muscle which influence muscle development. Experimental Cell Research, 153, 389–401.CrossRefPubMedGoogle Scholar
  75. 75.
    Mezzogiorno, A., Coletta, M., Zani, B. M., Cossu, G., & Molinaro, M. (1993). Paracrine stimulation of senescent satellite cell proliferation by factors released by muscle or myotubes from young mice. Mechanism of Ageing and Development, 70, 35–44.CrossRefGoogle Scholar
  76. 76.
    Beggs, M. L., Nagarajan, R., Taylor-Jones, J. M., Nolen, G., Macnicol, M., & Peterson, C. A. (2004). Alterations in the TGFbeta signaling pathway in myogenic progenitors with age. Aging Cell, 3, 353–361.CrossRefPubMedGoogle Scholar
  77. 77.
    Li, Y., Foster, W., Deasy, B. M., Chan, Y., Prisk, V., Tang, Y., et al. (2004). Transforming growth factor-beta1 induces the differentiation of myogenic cells into fibrotic cells in injured skeletal muscle: A key event in muscle fibrogenesis. American Journal of Pathology, 164, 1007–1019.PubMedGoogle Scholar
  78. 78.
    Florini, J. R., & Magri, K. A. (1989). Effects of growth factors on myogenic differentiation. American Journal Physiology, 256, C701–C711.Google Scholar
  79. 79.
    Reeves, I., Abribat, T., Laramee, P., Jasmin, G., & Brazeau, P. (2000). Age-related serum levels of insulin-like growth factor-I, -II and IGF-binding protein-3 following myocardial infarction. Growth Hormone & IGF Research, 10, 78–84.CrossRefGoogle Scholar
  80. 80.
    Liu, H., Fergusson, M. M., Castilho, R. M., Liu, J., Cao, L., Chen, J., et al. (2007). Augmented Wnt signaling in a mammalian model of accelerated aging. Science, 317, 803–806.CrossRefPubMedGoogle Scholar
  81. 81.
    Chen, Y., Zajac, J. D., & MacLean, H. E. (2005). Androgen regulation of satellite cell function. Journal Endocrinology, 186, 21–31.CrossRefGoogle Scholar
  82. 82.
    Snyder, P. J. (2001). Effects of age on testicular function and consequences of testosterone treatment. Journal of clinical endocrinology and metabolism, 86, 2369–2372.CrossRefPubMedGoogle Scholar
  83. 83.
    Renault, V., Rolland, E., Thornell, L. E., Mouly, V., & Butler-Browne, G. (2002). Distribution of satellite cells in the human vastus lateralis muscle during aging. Experimental Gerontology, 37, 1513–1514.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  1. 1.Department of Neurology and Neurological SciencesStanford University School of MedicineStanfordUSA
  2. 2.GRECC and Neurology ServiceVA Palo Alto Health Care SystemPalo AltoUSA

Personalised recommendations