Stem Cell Reviews

, Volume 3, Issue 3, pp 212–217 | Cite as

Aging, Graying and Loss of Melanocyte Stem Cells

  • Kavita Y. Sarin
  • Steven E. Artandi


Hair graying is one of the prototypical signs of human aging. Maintenance of hair pigmentation is dependent on the presence and functionality of melanocytes, neural crest derived cells which synthesize pigment for growing hair. The melanocytes, themselves, are maintained by a small number of stem cells which reside in the bulge region of the hair follicle. The recent characterization of the melanocyte lineage during aging has significantly accelerated our understanding of how age-related changes in the melanocyte stem cell compartment contribute to hair graying. This review will discuss our current understanding of hair graying, drawing on evidence from human and mouse studies, and consider the contribution of melanocyte stem cells to this process. Furthermore, using the melanocyte lineage as an example, it will discuss common theories of tissue and stem cell aging.


Stem cells Aging Pigmentation Graying Melanocytes Telomeres Bcl2 Vitiligo Light mutation 


  1. 1.
    Allsopp, R. C., Morin, G. B., DePinho, R., Harley, C. B., & Weissman, I. L. (2003). Telomerase is required to slow telomere shortening and extend replicative lifespan of HSCs during serial transplantation. Blood, 102, 517–520.PubMedCrossRefGoogle Scholar
  2. 2.
    Arck, P. C., Overall, R., Spatz, K., Liezman, C., Handjiski, B., Klapp, B. F., et al. (2006). Towards a “free radical theory of graying”: Melanocyte apoptosis in the aging human hair follicle is an indicator of oxidative stress induced tissue damage. FASEB Journal, 20, 1567–1569.PubMedCrossRefGoogle Scholar
  3. 3.
    Bandyopadhyay, D., & Medrano, E. E. (2003). The emerging role of epigenetics in cellular and organismal aging. Experimental Gerontology, 38, 1299–1307.PubMedCrossRefGoogle Scholar
  4. 4.
    Barsh, G. S. (1996). The genetics of pigmentation: From fancy genes to complex traits. Trends in Genetics, 12, 299–305.PubMedCrossRefGoogle Scholar
  5. 5.
    Blackburn, E. H. (2001). Switching and signaling at the telomere. Cell, 106, 661–673.PubMedCrossRefGoogle Scholar
  6. 6.
    Blanpain, C., Horsley, V., & Fuchs, E. (2007). Epithelial stem cells: Turning over new leaves. Cell, 128, 445–458.PubMedCrossRefGoogle Scholar
  7. 7.
    Blanpain, C., Lowry, W. E., Geoghegan, A., Polak, L., & Fuchs, E. (2004). Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell, 118, 635–648.PubMedCrossRefGoogle Scholar
  8. 8.
    Botchkareva, N. V., Khlgatian, M., Longley, B. J., Botchkarev, V. A., & Gilchrest, B. A. (2001). SCF/c-kit signaling is required for cyclic regeneration of the hair pigmentation unit. FASEB Journal, 15, 645–658.PubMedCrossRefGoogle Scholar
  9. 9.
    Cable, J., Jackson, I. J., & Steel, K. P. (1995). Mutations at the W locus affect survival of neural crest-derived melanocytes in the mouse. Mechanisms of Development, 50, 139–150.PubMedCrossRefGoogle Scholar
  10. 10.
    Chang, S., Multani, A. S., Cabrera, N. G., Naylor, M. L., Laud, P., Lombard, D., et al. (2004). Essential role of limiting telomeres in the pathogenesis of Werner syndrome. Nature Genetics, 36, 877–882.PubMedCrossRefGoogle Scholar
  11. 11.
    Chin, L., Artandi, S. E., Shen, Q., Tam, A., Lee, S. L., Gottlieb, G. J., et al. (1999). p53 Deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell, 97, 527–538.PubMedCrossRefGoogle Scholar
  12. 12.
    Commo, S., Gaillard, O., & Bernard, B. A. (2004). Human hair greying is linked to a specific depletion of hair follicle melanocytes affecting both the bulb and the outer root sheath. British Journal of Dermatology, 150, 435–443.PubMedCrossRefGoogle Scholar
  13. 13.
    Conboy, I. M., Conboy, M. J., Wagers, A. J., Girma, E. R., Weissman, I. L., & Rando, T. A. (2005). Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature, 433, 760–764.PubMedCrossRefGoogle Scholar
  14. 14.
    Conboy, I. M., & Rando, T. A. (2005). Aging, stem cells and tissue regeneration: Lessons from muscle. Cell Cycle, 4, 407–410.PubMedGoogle Scholar
  15. 15.
    d’Adda di Fagagna, F., Reaper, P. M., Clay-Farrace, L., Fiegler, H., Carr, P., Von Zglinicki, T., et al. (2003). A DNA damage checkpoint response in telomere-initiated senescence. Nature, 426, 194–198.PubMedCrossRefGoogle Scholar
  16. 16.
    Globerson, A. (1999). Hematopoietic stem cells and aging. Experimental Gerontology, 34, 137–146.PubMedCrossRefGoogle Scholar
  17. 17.
    Gosain, A., & DiPietro, L. A. (2004). Aging and wound healing. World Journal of Surgery, 28, 321–326.PubMedCrossRefGoogle Scholar
  18. 18.
    Hemesath, T. J., Steingrimsson, E., McGill, G., Hansen, M. J., Vaught, J., Hodgkinson, C. A., et al. (1994). Microphthalmia, a critical factor in melanocyte development, defines a discrete transcription factor family. Genes & Development, 8, 2770–2780.CrossRefGoogle Scholar
  19. 19.
    Johnson, R., & Jackson, I. J. (1992). Light is a dominant mouse mutation resulting in premature cell death. Nature Genetics, 1, 226–229.PubMedCrossRefGoogle Scholar
  20. 20.
    Karlseder, J., Broccoli, D., Dai, Y., Hardy, S., & de Lange, T. (1999). p53-and ATM-dependent apoptosis induced by telomeres lacking TRF2. Science, 283, 1321–1325.PubMedCrossRefGoogle Scholar
  21. 21.
    Kiger, A. A., Jones, D. L., Schulz, C., Rogers, M. B., & Fuller, M. T. (2001). Stem cell self-renewal specified by JAK-STAT activation in response to a support cell cue. Science, 294, 2542–2545.PubMedCrossRefGoogle Scholar
  22. 22.
    Kunisada, T., Yoshida, H., Yamazaki, H., Miyamoto, A., Hemmi, H., Nishimura, E., et al. (1998). Transgene expression of steel factor in the basal layer of epidermis promotes survival, proliferation, differentiation and migration of melanocyte precursors. Development, 125, 2915–2923.PubMedGoogle Scholar
  23. 23.
    Kurita, K., Nishito, M., Shimogaki, H., Takada, K., Yamazaki, H., & Kunisada, T. (2005). Suppression of progressive loss of coat color in microphthalmia-vitiligo mutant mice. Journal of Investigative Dermatology, 125, 538–544.PubMedCrossRefGoogle Scholar
  24. 24.
    Lamoreux, M. L., Boissy, R. E., Womack, J. E., & Nordlund, J. J. (1992). The Vit gene maps to the Mi (Microphthalmia) locus of the laboratory mouse. Journal of Heredity, 83, 435–439.PubMedGoogle Scholar
  25. 25.
    Lee, H. W., Blasco, M. A., Gottlieb, G. J., Horner, J. W., Greider, C. W., & DePinho, R. A. (1998). Essential role of mouse telomerase in highly proliferative organs. Nature, 392, 569–574.PubMedCrossRefGoogle Scholar
  26. 26.
    Lerner, A. B., Shiohara, T., Boissy, R. E., Jacobson, K. A., Lamoreux, M. L., & Moellmann, G. E. (1986). A mouse model for vitiligo. Journal of Investigative Dermatology, 87, 299–304.PubMedCrossRefGoogle Scholar
  27. 27.
    Mackenzie, M. A., Jordan, S. A., Budd, P. S., & Jackson, I. J. (1997). Activation of the receptor tyrosine kinase kit is required for the proliferation of melanoblasts in the mouse embryo. Developments in Biologicals, 192, 99–107.Google Scholar
  28. 28.
    Mak, S. S., Moriyama, M., Nishioka, E., Osawa, M., & Nishikawa, S. (2006). Indispensable role of Bcl2 in the development of the melanocyte stem cell. Developments in Biologicals, 291, 144–153.Google Scholar
  29. 29.
    McGill, G. G., Horstmann, M., Widlund, H. R., Du, J., Motyckova, G., Nishimura, E. K., et al. (2002). Bcl2 regulation by the melanocyte master regulator mitf modulates lineage survival and melanoma cell viability. Cell, 109, 707–718.PubMedCrossRefGoogle Scholar
  30. 30.
    Murphy, M., Reid, K., Williams, D. E., Lyman, S. D., & Bartlett, P. F. (1992). Steel factor is required for maintenance, but not differentiation, of melanocyte precursors in the neural crest. Developments in Biologicals, 153, 396–401.CrossRefGoogle Scholar
  31. 31.
    Nishikawa, S., Kusakabe, M., Yoshinaga, K., Ogawa, M., Hayashi, S., Kunisada, T., et al. (1991). In utero manipulation of coat color formation by a monoclonal anti-c-kit antibody: Two distinct waves of c-kit-dependency during melanocyte development. EMBO Journal, 10, 2111–2118.PubMedGoogle Scholar
  32. 32.
    Nishimura, E. K., Granter, S. R., & Fisher, D. E. (2005). Mechanisms of hair graying: Incomplete melanocyte stem cell maintenance in the niche. Science, 307, 720–724.PubMedCrossRefGoogle Scholar
  33. 33.
    Nishimura, E. K., Jordan, S. A., Oshima, H., Yoshida, H., Osawa, M., Moriyama, M., et al. (2002). Dominant role of the niche in melanocyte stem-cell fate determination. Nature, 416, 854–860.PubMedCrossRefGoogle Scholar
  34. 34.
    Osawa, M., Egawa, G., Mak, S. S., Moriyama, M., Freter, R., Yonetani, S., et al. (2005). Molecular characterization of melanocyte stem cells in their niche. Development, 132, 5589–5599.PubMedCrossRefGoogle Scholar
  35. 35.
    Quevedo, W. C., Szabo, G., & Virks, J. (1969). Influence of age and UV on the populations of dopa-positive melanocytes in human skin. Journal of Investigative Dermatology, 52, 287–290.PubMedGoogle Scholar
  36. 36.
    Rando, T. A. (2006). Stem cells, ageing and the quest for immortality. Nature, 441, 1080–1086.PubMedCrossRefGoogle Scholar
  37. 37.
    Rossi, D. J., Bryder, D., & Weissman, I. L. (2007). Hematopoietic stem cell aging: Mechanism and consequence. Experimental Gerontology, 42, 385–390.PubMedCrossRefGoogle Scholar
  38. 38.
    Rudolph, K. L., Chang, S., Lee, H. W., Blasco, M., Gottlieb, G. J., Greider, C., et al. (1999). Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell, 96, 701–712.PubMedCrossRefGoogle Scholar
  39. 39.
    Sharpless, N. E., & DePinho, R. A. (2004). Telomeres, stem cells, senescence, and cancer. Journal of Clinical Investigation, 113, 160–168.PubMedCrossRefGoogle Scholar
  40. 40.
    Slominski, A., & Paus, R. (1993). Melanogenesis is coupled to murine anagen: Toward new concepts for the role of melanocytes and the regulation of melanogenesis in hair growth. Journal of Investigative Dermatology, 101, 90S–97S.PubMedCrossRefGoogle Scholar
  41. 41.
    Spradling, A., Drummond-Barbosa, D., & Kai, T. (2001). Stem cells find their niche. Nature, 414, 98–104.PubMedCrossRefGoogle Scholar
  42. 42.
    Steingrimsson, E., Copeland, N. G., & Jenkins, N. A. (2005). Melanocyte stem cell maintenance and hair graying. Cell, 121, 9–12.PubMedCrossRefGoogle Scholar
  43. 43.
    Takai, H., Smogorzewska, A., & de Lange, T. (2003). DNA damage foci at dysfunctional telomeres. Current Biology, 13, 1549–1556.PubMedCrossRefGoogle Scholar
  44. 44.
    Tobin, D. J., & Bystryn, J. C. (1996). Different populations of melanocytes are present in hair follicles and epidermis. Pigment Cell Research, 9, 304–310.PubMedCrossRefGoogle Scholar
  45. 45.
    Tobin, D. J., & Paus, R. (2001). Graying: Gerontobiology of the hair follicle pigmentary unit. Experimental Gerontology, 36, 29–54.PubMedCrossRefGoogle Scholar
  46. 46.
    Tumbar, T., Guasch, G., Greco, V., Blanpain, C., Lowry, W. E., Rendl, M., et al. (2004). Defining the epithelial stem cell niche in skin. Science, 303, 359–363.PubMedCrossRefGoogle Scholar
  47. 47.
    Van Zant, G., & Liang, Y. (2003). The role of stem cells in aging. Experimental Hematology, 31, 659–672.PubMedCrossRefGoogle Scholar
  48. 48.
    Veis, D. J., Sorenson, C. M., Shutter, J. R., & Korsmeyer, S. J. (1993). Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell, 75, 229–240.PubMedCrossRefGoogle Scholar
  49. 49.
    Wehrle-Haller, B., & Weston, J. A. (1995). Soluble and cell-bound forms of steel factor activity play distinct roles in melanocyte precursor dispersal and survival on the lateral neural crest migration pathway. Development, 121, 731–742.PubMedGoogle Scholar
  50. 50.
    Yoshida, H., Kunisada, T., Grimm, T., Nishimura, E. K., Nishioka, E., & Nishikawa, S. I. (2001). Review: Melanocyte migration and survival controlled by SCF/c-kit expression. Journal of Investigative Dermatology Symposium Proceedings, 6, 1–5.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  1. 1.Department of MedicineStanford University School of MedicineStanfordUSA

Personalised recommendations