Stem Cell Reviews

, Volume 3, Issue 3, pp 192–200 | Cite as

Aging and the Germ Line: Where Mortality and Immortality Meet

  • D. Leanne JonesEmail author


Germ cells are highly specialized cells that form gametes, and they are the only cells within an organism that contribute genes to offspring. Germline stem cells (GSCs) sustain gamete production, both oogenesis (egg production) and spermatogenesis (sperm production), in many organisms. Since the genetic information contained within germ cells is passed from generation to generation, the germ line is often referred to as immortal. Therefore, it is possible that germ cells possess unique strategies to protect and transmit the genetic information contained within them indefinitely. However, aging often leads to a dramatic decrease in gamete production and fecundity. In addition, single gene mutations affecting longevity often have a converse effect on reproduction. Recent studies examining age-related changes in GSC number and activity, as well as changes to the stem cell microenvironment, provide insights into the mechanisms underlying the observed reduction in gametogenesis over the lifetime of an organism.


Stem cell Niche Germ line Gametes Aging 



The author would like to thank Thomas Flatt, Andrew Dillin, Shawn Ahmed, and Matt Wallenfang for helpful discussions and comments on the manuscript and acknowledges support from the Ellison Medical Foundation, the American Federation for Aging Research, the G. Harold and Leila Y. Mathers Charitable Foundation, and NIH/NIA grant R01 AG028092 (D.L.J.). I apologize to those colleagues whose work has not been referenced directly due to space limitations.


  1. 1.
    Partridge, L., Gems, D., & Withers, D. J. (2005). Sex and death: What is the connection? Cell, 120(4), 461–472.CrossRefPubMedGoogle Scholar
  2. 2.
    Harshman, L. G., & Zera, A. J. (2007). The cost of reproduction: The devil in the details. Trends in Ecology & Evolution, 22(2), 80–86.CrossRefGoogle Scholar
  3. 3.
    Schofield, R. (1978). The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells, 4(1–2), 7–25.PubMedGoogle Scholar
  4. 4.
    Xie, T., & Spradling, A. C. (2000). A niche maintaining germ line stem cells in the Drosophila ovary. Science, 290(5490), 328–330.CrossRefPubMedGoogle Scholar
  5. 5.
    Kiger, A. A., Jones, D. L., Schulz, C., Rogers, M. B., & Fuller, M. T. (2001). Stem cell self-renewal specified by JAK-STAT activation in response to a support cell cue. Science, 294(5551), 2542–2545.CrossRefPubMedGoogle Scholar
  6. 6.
    Tulina, N., & Matunis, E. (2001). Control of stem cell self-renewal in Drosophila spermatogenesis by JAK-STAT signaling. Science, 294(5551), 2546–2549.CrossRefPubMedGoogle Scholar
  7. 7.
    Calvi, L. M., Adams, G. B., Weibrecht, K. W., Weber, J. M., Olson, D. P., Knight, M. C., et al. (2003). Osteoblastic cells regulate the haematopoietic stem cell niche. Nature, 425(6960), 841–846.CrossRefPubMedGoogle Scholar
  8. 8.
    Zhang, J., Niu, C., Ye, L., Huang, H., Xe, X., Tong, W. G., et al. (2003). Identification of the haematopoietic stem cell niche and control of the niche size. Nature, 425(6960), 836–841.CrossRefPubMedGoogle Scholar
  9. 9.
    Tumbar, T., Guasch, G., Greco, V., Blanpain, C., Lowry, W. E., Rendl, M., et al. (2004). Defining the epithelial stem cell niche in skin. Science, 303(5656), 359–363.CrossRefPubMedGoogle Scholar
  10. 10.
    Fuchs, E., Tumbar, T., & Guasch, G. (2004). Socializing with the neighbors: Stem cells and their niche. Cell, 116(6), 769–778.CrossRefPubMedGoogle Scholar
  11. 11.
    Kimble, J., & Crittenden, S. (2005). Germline proliferation and its control. In WormBook,
  12. 12.
    Crittenden, S. L., Leonhard, K. A., Byrd, D. T., & Kimble, J. (2006). Cellular analyses of the mitotic region in the Caenorhabditis elegans adult germ line. Molecular Biology of the Cell, 17(7), 3051–3061.CrossRefPubMedGoogle Scholar
  13. 13.
    Henderson, S. T., Gao, D., Lambie, E. J., & Kimble, J. (1994). lag-2 may encode a signaling ligand for the GLP-1 and LIN-12 receptors of C. elegans. Development, 120(10), 2913–2924.PubMedGoogle Scholar
  14. 14.
    Tax, F. E., Yeargers, J. J., & Thomas, J. H. (1994). Sequence of C. elegans lag-2 reveals a cell-signalling domain shared with Delta and Serrate of Drosophila. Nature, 368(6467), 150–154.CrossRefPubMedGoogle Scholar
  15. 15.
    Austin, J., & Kimble, J. (1987). glp-1 is required in the germ line for regulation of the decision between mitosis and meiosis in C. elegans. Cell, 51(4), 589–599.CrossRefPubMedGoogle Scholar
  16. 16.
    Kimble, J. E., & White, J. G. (1981). On the control of germ cell development in Caenorhabditis elegans. Developments in Biologicals, 81(2), 208–219.CrossRefGoogle Scholar
  17. 17.
    Lambie, E. J., & Kimble, J. (1991). Two homologous regulatory genes, lin-12 and glp-1, have overlapping functions. Development, 112(1), 231–240.PubMedGoogle Scholar
  18. 18.
    Narbonne, P., & Roy, R. (2006). Inhibition of germline proliferation during C. elegans dauer development requires PTEN, LKB1 and AMPK signalling. Development, 133(4), 611–619.CrossRefPubMedGoogle Scholar
  19. 19.
    Kenyon, C. (2005). The plasticity of aging: Insights from long-lived mutants. Cell, 120(4), 449–460.CrossRefPubMedGoogle Scholar
  20. 20.
    LaFever, L., & Drummond-Barbosa, D. (2005). Direct control of germline stem cell division and cyst growth by neural insulin in Drosophila. Science, 309(5737), 1071–1073.CrossRefPubMedGoogle Scholar
  21. 21.
    Castrillon, D. H., Miao, L., Kollipara, R., Horner, J. W., & DePinho, R. A. (2003). Suppression of ovarian follicle activation in mice by the transcription factor Foxo3a. Science, 301(5630), 215–218.CrossRefPubMedGoogle Scholar
  22. 22.
    Liu, L., Rajareddy, S., Reddy, P., Du, C., Jagarlamudi, K., Shen, Y., et al. (2007). Infertility caused by retardation of follicular development in mice with oocyte-specific expression of Foxo3a. Development, 134(1), 199–209.CrossRefPubMedGoogle Scholar
  23. 23.
    Gems, D., Sutton, A. J., Sundenmeyer, M. L., Albert, P. S., King, K. V., & Edgley, M. L. (1998). Two pleiotropic classes of daf-2 mutation affect larval arrest, adult behavior, reproduction and longevity in Caenorhabditis elegans. Genetics, 150(1), 129–155.PubMedGoogle Scholar
  24. 24.
    Dillin, A., Crawford, D. K., & Kenyon, C. (2002). Timing requirements for insulin/IGF-1 signaling in C. elegans. Science, 298(5594), 830–834.CrossRefPubMedGoogle Scholar
  25. 25.
    Hsin, H., & Kenyon, C. (1999). Signals from the reproductive system regulate the lifespan of C. elegans. Nature, 399(6734), 362–366.CrossRefPubMedGoogle Scholar
  26. 26.
    Arantes-Oliveira, N., Apfeld, J., Dillin, J., & Kenyon, C. (2002). Regulation of life-span by germ-line stem cells in Caenorhabditis elegans. Science, 295(5554), 502–505.CrossRefPubMedGoogle Scholar
  27. 27.
    Yamashita, Y. M., Fuller, M. T., & Jones, D. L. (2005). Signaling in stem cell niches: Lessons from the Drosophila germline. Journal of Cell Science, 118(Pt 4), 665–672.CrossRefPubMedGoogle Scholar
  28. 28.
    Harrison, D. A., McCoon, P. E., Binari, R., Gilman, M., & Perrimon, N. (1998). Drosophila unpaired encodes a secreted protein that activates the JAK signaling pathway. Genes & Development, 12(20), 3252–3263.Google Scholar
  29. 29.
    Moustakas, A. (2002). Smad signalling network. Journal of Cell Science, 115(Pt 17), 3355–3356.PubMedGoogle Scholar
  30. 30.
    Lin, H. (2002). The stem-cell niche theory: Lessons from flies. Nature Reviews. Genetics, 3(12), 931–940.CrossRefPubMedGoogle Scholar
  31. 31.
    Xie, T., & Spradling, A. C. (1998). Decapentaplegic is essential for the maintenance and division of germline stem cells in the Drosophila ovary. Cell, 94(2), 251–260.CrossRefPubMedGoogle Scholar
  32. 32.
    Kai, T., & Spradling, A. (2003). An empty Drosophila stem cell niche reactivates the proliferation of ectopic cells. Proceedings of the National Academy of Sciences of the United States of America, 100(8), 4633–4638.CrossRefPubMedGoogle Scholar
  33. 33.
    Wallenfang, M., Nayak, R., & DiNardo, S. (2006). Dynamics of the male germline stem cell population during aging of Drosophila melanogaster. Aging Cell, 5, 297–304.CrossRefPubMedGoogle Scholar
  34. 34.
    Boyle, M., et al. Decline in self-renewal factors contributes to aging of the stem cell niche. (Submitted)Google Scholar
  35. 35.
    Hardy, R. W., Tokuyasu, K. T., Lindsley, D. L., & Garavito, M. (1979). The germinal proliferation center in the testis of Drosophila melanogaster. Journal of Ultrastructure Research, 69(2), 180–190.CrossRefPubMedGoogle Scholar
  36. 36.
    Helfand, S. L., & Rogina, B. (2003). Molecular genetics of aging in the fly: Is this the end of the beginning? Bioessays, 25(2), 134–141.CrossRefPubMedGoogle Scholar
  37. 37.
    de Cuevas, M., & Spradling, A. C. (1998). Morphogenesis of the Drosophila fusome and its implications for oocyte specification. Development, 125(15), 2781–2789.PubMedGoogle Scholar
  38. 38.
    McKearin, D., & Ohlstein, B. (1995). A role for the Drosophila bag-of-marbles protein in the differentiation of cystoblasts from germline stem cells. Development, 121(9), 2937–2947.PubMedGoogle Scholar
  39. 39.
    Brawley, C., & Matunis, E. (2004). Regeneration of male germline stem cells by spermatogonial dedifferentiation in vivo. Science, 304(5675), 1331–1334.CrossRefPubMedGoogle Scholar
  40. 40.
    Margolis, J., & Spradling, A. (1995). Identification and behavior of epithelial stem cells in the Drosophila ovary. Development, 121(11), 3797–3807.PubMedGoogle Scholar
  41. 41.
    Song, X., Zhu, C. H., Doan, C., & Xie, T. (2002). Germline stem cells anchored by adherens junctions in the Drosophila ovary niches. Science, 296(5574), 1855–1857.CrossRefPubMedGoogle Scholar
  42. 42.
    Conboy, I. M., Conboy, M. J., Wagers, A. J., Girma, E. R., Weismann, I. L., & Rando, T. A. (2005). Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature, 433(7027), 760–764.CrossRefPubMedGoogle Scholar
  43. 43.
    Rando, T. A. (2006). Stem cells, ageing and the quest for immortality. Nature, 441(7097), 1080–1086.CrossRefPubMedGoogle Scholar
  44. 44.
    Fujiwara, T., Dunn, N. R., & Hogan, B. L. (2001). Bone morphogenetic protein 4 in the extraembryonic mesoderm is required for allantois development and the localization and survival of primordial germ cells in the mouse. Proceedings of the National Academy of Sciences of the United States of America, 98(24), 13739–13744.CrossRefPubMedGoogle Scholar
  45. 45.
    Clark, A. T., Bodnar, M. S., Fox, M., Rodriguez, R. T., Abeyta, M. J., Firpo, M. T., et al. (2004). Spontaneous differentiation of germ cells from human embryonic stem cells in vitro. Human Molecular Genetics, 13(7), 727–739.CrossRefPubMedGoogle Scholar
  46. 46.
    Chuma, S., Kanatsu-Shinohara, M., Inoue, K., Ogonuki, N., Miki, H., Toyokuni, S., et al. (2005). Spermatogenesis from epiblast and primordial germ cells following transplantation into postnatal mouse testis. Development, 132(1), 117–122.CrossRefPubMedGoogle Scholar
  47. 47.
    Zwaka, T. P., & Thomson, J. A. (2005). A germ cell origin of embryonic stem cells? Development, 132(2), 227–233.CrossRefPubMedGoogle Scholar
  48. 48.
    Kanatsu-Shinohara, M., & Shinohara, T. (2006). The germ of pluripotency. Nature Biotechnology, 24(6), 663–664.CrossRefPubMedGoogle Scholar
  49. 49.
    Brinster, R. L., & Zimmermann, J. W. (1994). Spermatogenesis following male germ-cell transplantation. Proceedings of the National Academy of Sciences of the United States of America, 91(24), 11298–11302.CrossRefPubMedGoogle Scholar
  50. 50.
    Brinster, R. L. (2002). Germline stem cell transplantation and transgenesis. Science, 296(5576), 2174–2176.CrossRefPubMedGoogle Scholar
  51. 51.
    Meng, X., Lindhal, M., Hyvonen, M. E., Parvinen, M., de Rooim, D. G., Hess, N. W., et al. (2000). Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science, 287(5457), 1489–1493.CrossRefPubMedGoogle Scholar
  52. 52.
    Buaas, F. W., Kirsh, A. l., Sharma, M., McLean, D. J., Morris, J. L., Griswold, M. D., et al. (2004). Plzf is required in adult male germ cells for stem cell self-renewal. Nature Genetics, 36(6), 647–652.CrossRefPubMedGoogle Scholar
  53. 53.
    Kubota, H., Avarbock, M. R., & Brinster, R. L. (2004). Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proceedings of the National Academy of Sciences of the United States of America, 101(47), 16489–16494.CrossRefPubMedGoogle Scholar
  54. 54.
    Ryu, B. Y., Orwig, K. E., Oatley, J. M., Avarbock, M. R., & Brinster, R. L. (2006). Effects of aging and niche microenvironment on spermatogonial stem cell self-renewal. Stem Cells, 24(6), 1505–1511.CrossRefPubMedGoogle Scholar
  55. 55.
    Zhang, X., Ebata, K. T., Robaira, B., & Nagano, M. C. (2006). Aging of male germ line stem cells in mice. Biology of Reproduction, 74(1), 119–124.CrossRefPubMedGoogle Scholar
  56. 56.
    Siminovitch, L., Till, J. E., & McCulloch, E. A. (1964). Decline in colony-forming ability of marrow cells subjected to serial transplantation into irradiated mice. Journal of Cellular Physiology, 64, 23–31.CrossRefPubMedGoogle Scholar
  57. 57.
    Ogden, D. A., & MIcklem, H. S. (1976). The fate of serially transplanted bone marrow cell populations from young and old donors. Transplantation, 22, 287–293.CrossRefPubMedGoogle Scholar
  58. 58.
    Harrison, D. E., & Astle, C. M. (1982). Loss of stem cell repopulating ability upon transplantation. Effects of donor age, cell number, and transplantation procedure. Journal of Experimental Medicine, 156(6), 1767–1779.CrossRefPubMedGoogle Scholar
  59. 59.
    Zuckerman, S. (1951). The number of ooctyes in the mature ovary. Recent Progress in Hormone Research, 6, 63–109.Google Scholar
  60. 60.
    Tilly, J. L. (2001). Commuting the death sentence: How oocytes strive to survive. Nature Reviews. Molecular Cell Biology, 2(11), 838–848.CrossRefPubMedGoogle Scholar
  61. 61.
    Richardson, S. J., Senikas, V., & Nelson, J. F. (1987). Follicular depletion during the menopausal transition: Evidence for accelerated loss and ultimate exhaustion. Journal of Clinical Endocrinology and Metabolism, 65(6), 1231–1237.PubMedCrossRefGoogle Scholar
  62. 62.
    Zuckerman, S., & Baker, T. G. (1977). The development of the ovary and the process of oogenesis. In S. Zuckerman, & B. J. Weir (Eds.), The ovary (pp. 41–67). New York: Academic.Google Scholar
  63. 63.
    Gosden, R. G., Laing, S.C., Felicio, L. S., Nelson, J. F., & Finch, C. E. (1983). Imminent oocyte exhaustion and reduced follicular recruitment mark the transition to acyclicity in aging C57BL/6J mice. Biology of Reproduction, 28(2), 255–260.CrossRefPubMedGoogle Scholar
  64. 64.
    Johnson, J., Canning, J., Kaneko, T., Pru, J. K., & Tilly, J. L. (2004). Germline stem cells and follicular renewal in the postnatal mammalian ovary. Nature, 428(6979), 145–150.CrossRefPubMedGoogle Scholar
  65. 65.
    Johnson, J., Badgeley, J., Skaznik-Wikiel, M., Lee, H. J., Adams, G. B., Niikura, Y., et al. (2005). Oocyte generation in adult mammalian ovaries by putative germ cells in bone marrow and peripheral blood. Cell, 122(2), 303–315.CrossRefPubMedGoogle Scholar
  66. 66.
    Greer, E. L., & Brunet, A. (2005). FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene, 24(50), 7410–7425.CrossRefPubMedGoogle Scholar
  67. 67.
    Tothova, Z., Kollipara, R., Huntly, B. J., Lee, B. H., Castrillon, D. H., Cullen, D. E., et al. (2007). FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell, 128(2), 325–339.CrossRefPubMedGoogle Scholar
  68. 68.
    Kirkwood, T. B. (1987). Immortality of the germ-line versus disposability of the soma. Basic Life Sciences, 42, 209–218.PubMedGoogle Scholar
  69. 69.
    Smelick, C., & Ahmed, S. (2005). Achieving immortality in the C. elegans germline. Ageing Research Reviews, 4(1), 67–82.CrossRefPubMedGoogle Scholar
  70. 70.
    Lombard, D. B., Chua, K. F., Mostoslavsky, R., Franco, S., Gostissa, M., & Alt, F. W. (2005). DNA repair, genome stability, and aging. Cell, 120(4), 497–512.CrossRefPubMedGoogle Scholar
  71. 71.
    Degtyareva, N. P., Greenwall, P., Randal Hofmann, E., Hengartner, M. O., Zhang, L., Culotti, J. G., et al. (2002). Caenorhabditis elegans DNA mismatch repair gene msh-2 is required for microsatellite stability and maintenance of genome integrity. Proceedings of the National Academy of Sciences of the United States of America, 99(4), 2158–2163.CrossRefPubMedGoogle Scholar
  72. 72.
    Tijsterman, M., Pothof, J., & Plasterk, R. H. (2002). Frequent germline mutations and somatic repeat instability in DNA mismatch-repair-deficient Caenorhabditis elegans. Genetics, 161(2), 651–660.PubMedGoogle Scholar
  73. 73.
    Engels, W. R., Johnson-Schlitz D., Flores, C., White, L., & Preston, C. R. (2007). A third link connecting aging with double strand break repair. Cell Cycle, 6(2), 131–135.Google Scholar
  74. 74.
    Preston, C. R., Flores, C., & Engels, W. R. (2006). Age-dependent usage of double-strand-break repair pathways. Current Biology, 16(20), 2009–2015.CrossRefPubMedGoogle Scholar
  75. 75.
    Ahmed, S., & Hodgkin, J. (2000). MRT-2 checkpoint protein is required for germline immortality and telomere replication in C. elegans. Nature, 403(6766), 159–164.CrossRefPubMedGoogle Scholar
  76. 76.
    Meier, B., Clejan, I., Liu, Y., Lowden, M., Gartner, A., Hodgkin, J., et al. (2006). trt-1 is the Caenorhabditis elegans catalytic subunit of telomerase. PLoS Genet, 2(2), e18.CrossRefPubMedGoogle Scholar
  77. 77.
    Zucchero, T., & Ahmed, S. (2006). Genetics of proliferative aging. Experimental Gerontology, 41(10), 992–1000.CrossRefPubMedGoogle Scholar
  78. 78.
    Ahmed, S. (2006). Uncoupling of pathways that promote postmitotic life span and apoptosis from replicative immortality of Caenorhabditis elegans germ cells. Aging Cell, 5(6), 559–563.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  1. 1.Laboratory of GeneticsThe Salk Institute for Biological StudiesLa Jolla, San DiegoUSA

Personalised recommendations