Stem Cell Reviews

, Volume 3, Issue 1, pp 7–17 | Cite as

Signaling Pathways in Cancer and Embryonic Stem Cells

Article

Abstract

Cancer cells have the ability to divide indefinitely and spread to different parts of the body during metastasis. Embryonic stem cells can self-renew and, through differentiation to somatic cells, provide the building blocks of the human body. Embryonic stem cells offer tremendous opportunities for regenerative medicine and serve as an excellent model system to study early human development. Many of the molecular mechanism underlying tumorigenesis in cancer and self-renewal in stem cells have been elucidated in the past decade. Here we present a systematic analysis of seven major signaling pathways implicated in both cancer and stem cells. We present on overview of the JAK/STAT, Notch, MAPK/ERK, PI3K/AKT, NF-kB, Wnt and TGF-β pathways and analyze their activation status in the context of cancer and stem cells. We focus on their role in stem cell self-renewal and development and identify key molecules, whose aberrant expression has been associated with malignant phenotypes. We conclude by presenting a map of the signaling networks involved in cancer and embryonic stem cells.

Keywords

Stem cells Cancer Signaling pathways JAK/STAT Notch MAPK/ERK PI3K/AKT NF-κB Wnt TGF-β 

Notes

Acknowledgments

We are grateful to the members of the Brivanlou lab, in particular Scott Noggle, Ariel Levine and Blaine Cooper for helpful discussions and assistance during the preparation of this manuscript. Andre Hoelz is acknowledged for inspiring discussions. This work was supported by NIH grant GM073370 to A.H. B. and a Zuckerman family postdoctoral fellowship to O.D.

References

  1. 1.
    Harley, C. B., Futcher, A. B., & Greider, C. W. (1990). Telomeres shorten during ageing of human fibroblasts. Nature, 345, 458–460.PubMedCrossRefGoogle Scholar
  2. 2.
    Campisi, J. (2005). Senescent cells, tumor suppression, and organismal aging: Good citizens, bad neighbors. Cell, 120, 513–522.PubMedCrossRefGoogle Scholar
  3. 3.
    Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100, 57–70.PubMedCrossRefGoogle Scholar
  4. 4.
    Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282, 1145–1147.PubMedCrossRefGoogle Scholar
  5. 5.
    Evans, M. J., & Kaufman, M. H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature, 292, 154–156.PubMedCrossRefGoogle Scholar
  6. 6.
    Hahn, W. C., Counter, C. M., Lundberg, A. S., Beijersbergen, R. L., Brooks, M. W., & Weinberg, R. A. (1999). Creation of human tumour cells with defined genetic elements. Nature, 400, 464–468.PubMedCrossRefGoogle Scholar
  7. 7.
    Gupta, G. P., & Massague, J. (2006). Cancer metastasis: Building a framework. Cell, 127, 679–695.PubMedCrossRefGoogle Scholar
  8. 8.
    Wang, T. L., Rago, C., Silliman, N., Ptak, J., Markowitz, S., Willson, J. K., et al. (2002). Prevalence of somatic alterations in the colorectal cancer cell genome. Proceedings of the National Academy of Sciences of the United States of America, 99, 3076–3080.PubMedCrossRefGoogle Scholar
  9. 9.
    Wang, J. C., & Dick, J. E. (2005). Cancer stem cells: lessons from leukemia. Trends in Cell Biology, 15, 494–501.PubMedCrossRefGoogle Scholar
  10. 10.
    Al-Hajj, M., & Clarke, M. F. (2004). Self-renewal and solid tumor stem cells. Oncogene, 23, 7274–7282.PubMedCrossRefGoogle Scholar
  11. 11.
    Tan, B. T., Park, C. Y., Ailles, L. E., & Weissman, I. L. (2006). The cancer stem cell hypothesis: A work in progress. Laboratory Investigation, 86, 1203–1207.PubMedCrossRefGoogle Scholar
  12. 12.
    Brivanlou, A. H., & Darnell, J. E. Jr. (2002). Signal transduction and the control of gene expression. Science, 295, 813–818.PubMedCrossRefGoogle Scholar
  13. 13.
    Darnell, J. E. Jr. (2002). Transcription factors as targets for cancer therapy. Nature Reviews. Cancer, 2, 740–749.PubMedCrossRefGoogle Scholar
  14. 14.
    Darnell, J. E. (2005). Validating Stat3 in cancer therapy. Natural Medicines, 11, 595–596.CrossRefGoogle Scholar
  15. 15.
    Bromberg, J. (2002). Stat proteins and oncogenesis. Journal of Clinical Investigation, 109, 1139–1142.PubMedCrossRefGoogle Scholar
  16. 16.
    Slamon, D. J., Clark, G. M., Wong, S. G., Levin, W. J., Ullrich, A., & McGuire, W. L. (1987). Human breast cancer: Correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science, 235, 177–182.PubMedCrossRefGoogle Scholar
  17. 17.
    Yarden, Y., & Ullrich, A. (1988). Growth factor receptor tyrosine kinases. Annual Review of Biochemistry, 57, 443–478.PubMedCrossRefGoogle Scholar
  18. 18.
    Nichols, J., Chambers, I., Taga, T., & Smith, A. (2001). Physiological rationale for responsiveness of mouse embryonic stem cells to gp130 cytokines. Development, 128, 2333–2339.PubMedGoogle Scholar
  19. 19.
    Sato, N., Meijer, L., Skaltsounis, L., Greengard, P., & Brivanlou, A. H. (2004). Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Natural Medicines, 10, 55–63.CrossRefGoogle Scholar
  20. 20.
    Noggle, S. A., James, D., & Brivanlou, A. H. (2005). A molecular basis for human embryonic stem cell pluripotency. Stem Cell Review, 1, 111–118.CrossRefGoogle Scholar
  21. 21.
    Ehebauer, M., Hayward, P., & Arias, A. M. (2006). Notch, a universal arbiter of cell fate decisions. Science, 314, 1414–1415.PubMedCrossRefGoogle Scholar
  22. 22.
    Weng, A. P., Ferrando, A. A., Lee, W., Morris, J. Pt., Silverman, L. B., Sanchez-Irizarrym C., et al. (2004). Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science, 306, 269–271.PubMedCrossRefGoogle Scholar
  23. 23.
    Roy, M., Pear, W. S., & Aster, J. C. (2007). The multifaceted role of Notch in cancer. Current Opinion in Genetics & Development, 17, 52–59.CrossRefGoogle Scholar
  24. 24.
    Stylianou, S., Clarke, R. B., & Brennan, K. (2006). Aberrant activation of notch signaling in human breast cancer. Cancer Research, 66, 1517–1525.PubMedCrossRefGoogle Scholar
  25. 25.
    Noggle, S. A., Weiler, D., & Condie, B. G. (2006). Notch signaling is inactive but inducible in human embryonic stem cells. Stem Cells, 24, 1646–1653.PubMedCrossRefGoogle Scholar
  26. 26.
    Lowell, S., Benchoua, A., Heavey, B., & Smith, A. G. (2006). Notch promotes neural lineage entry by pluripotent embryonic stem cells. PLoS Biol, 4, e121.PubMedCrossRefGoogle Scholar
  27. 27.
    Katz, M., Amit, I., & Yarden, Y. (2007). Regulation of MAPKs by growth factors and receptor tyrosine kinases. Biochimica et Biophysica Acta.Google Scholar
  28. 28.
    Sebolt-Leopold, J. S., & Herrera, R. (2004). Targeting the mitogen-activated protein kinase cascade to treat cancer. Nature Reviews. Cancer, 4, 937–947.PubMedCrossRefGoogle Scholar
  29. 29.
    Armstrong, L., Hughes, O., Yung, S., Hyslop, L., Stewart, R., Wappler, I., et al. (2006). The role of PI3K/AKT, MAPK/ERK and NFkappabeta signalling in the maintenance of human embryonic stem cell pluripotency and viability highlighted by transcriptional profiling and functional analysis. Human Molecular Genetics, 15, 1894–1913.PubMedCrossRefGoogle Scholar
  30. 30.
    Hennessy, B. T., Smith, D. L., Ram, P. T., Lu, Y., & Mills, G. B. (2005). Exploiting the PI3K/AKT pathway for cancer drug discovery. Nature Reviews Drug Discovery, 4, 988–1004.PubMedCrossRefGoogle Scholar
  31. 31.
    Vivanco, I., & Sawyers, C. L. (2002). The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nature Reviews. Cancer, 2, 489–501.PubMedCrossRefGoogle Scholar
  32. 32.
    Takahashi, K., Murakami, M., & Yamanaka, S. (2005). Role of the phosphoinositide 3-kinase pathway in mouse embryonic stem (ES) cells. Biochemical Society Transactions, 33, 1522–1525.PubMedCrossRefGoogle Scholar
  33. 33.
    Paling, N. R., Wheadon, H., Bone, H. K., & Welham, M. J. (2004). Regulation of embryonic stem cell self-renewal by phosphoinositide 3-kinase-dependent signaling. Journal of Biological Chemistry, 279, 48063–48070.PubMedCrossRefGoogle Scholar
  34. 34.
    Courtois, G., & Gilmore, T. D. (2006). Mutations in the NF-kappaB signaling pathway: Implications for human disease. Oncogene, 25, 6831–6843.PubMedCrossRefGoogle Scholar
  35. 35.
    Gilmore, T. D., Cormier, C., Jean-Jacques, J., & Gapuzan, M. E. (2001). Malignant transformation of primary chicken spleen cells by human transcription factor c-Rel. Oncogene, 20, 7098–7103.PubMedCrossRefGoogle Scholar
  36. 36.
    Barth, T. F., Martin-Subero, J. I., Joos, S., Menz, C. K., Hasel, C., Mechtersheimer, G., et al. (2003). Gains of 2p involving the REL locus correlate with nuclear c-Rel protein accumulation in neoplastic cells of classical Hodgkin lymphoma. Blood, 101, 3681–3686.PubMedCrossRefGoogle Scholar
  37. 37.
    Logan, C. Y., & Nusse, R. (2004). The Wnt signaling pathway in development and disease. Annual Review of Cell and Developmental Biology, 20, 781–810.PubMedCrossRefGoogle Scholar
  38. 38.
    Tetsu, O., & McCormick, F. (1999). Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature, 398, 422–426.PubMedCrossRefGoogle Scholar
  39. 39.
    Blanpain, C., Horsley, V., & Fuchs, E. (2007). Epithelial stem cells: Turning over new leaves. Cell, 128, 445–458.PubMedCrossRefGoogle Scholar
  40. 40.
    Giles, R. H., van Es, J. H., & Clevers, H. (2003). Caught up in a Wnt storm: Wnt signaling in cancer. Biochimica et Biophysica Acta, 1653, 1–24.PubMedGoogle Scholar
  41. 41.
    Reya, T., & Clevers, H. (2005). Wnt signalling in stem cells and cancer. Nature, 434, 843–850.PubMedCrossRefGoogle Scholar
  42. 42.
    Jamieson, C. H., Ailles, L. E., Dylla, S. J., Muijtjens, M., Jones, C., Zehnder, J. L., et al. (2004). Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. New England Journal of Medicine, 351, 657–667.PubMedCrossRefGoogle Scholar
  43. 43.
    Besser, D. (2004). Expression of nodal, lefty-a, and lefty-B in undifferentiated human embryonic stem cells requires activation of Smad2/3. Journal of Biological Chemistry, 279, 45076–45084.PubMedCrossRefGoogle Scholar
  44. 44.
    Hansel, D. E., Kern, S. E., & Hruban, R. H. (2003). Molecular pathogenesis of pancreatic cancer. Annual Review of Genomics and Human Genetics, 4, 237–256.PubMedCrossRefGoogle Scholar
  45. 45.
    Bardeesy, N., Cheng, K. H., Berger, J. H., Chu, G. C., Pahler, J., Olson, P., et al. (2006). Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer. Genes & Development, 20, 3130–3146.CrossRefGoogle Scholar
  46. 46.
    Langenfeld, E. M., Calvano, S. E., Abou-Nukta, F., Lowry, S. F., Amenta, P., & Langenfeld, J. (2003). The mature bone morphogenetic protein-2 is aberrantly expressed in non-small cell lung carcinomas and stimulates tumor growth of A549 cells. Carcinogenesis, 24, 1445–1454.PubMedCrossRefGoogle Scholar
  47. 47.
    Langenfeld, E. M., Kong, Y., & Langenfeld, J. (2006). Bone morphogenetic protein 2 stimulation of tumor growth involves the activation of Smad-1/5. Oncogene, 25, 685–692.PubMedCrossRefGoogle Scholar
  48. 48.
    Thiery, J. P., & Sleeman, J. P. (2006). Complex networks orchestrate epithelial-mesenchymal transitions. Nature Reviews. Molecular Cell Biology, 7, 131–142.PubMedCrossRefGoogle Scholar
  49. 49.
    Hartwell, K. A., Muir, B., Reinhardt, F., Carpenter, A. E., Sgroi, D. C., & Weinberg, R. A. (2006). The Spemann organizer gene, Goosecoid, promotes tumor metastasis. Proceedings of the National Academy of Sciences of the United States of America, 103, 18969–18974.PubMedCrossRefGoogle Scholar
  50. 50.
    Zavadil, J., & Bottinger, E. P. (2005). TGF-beta and epithelial-to-mesenchymal transitions. Oncogene, 24, 5764–5774.PubMedCrossRefGoogle Scholar
  51. 51.
    Yang, J., Mani, S. A., Donaher, J. L., Ramaswamy, S., Itzykson, R. A., Come, C., et al. (2004). Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell, 117, 927–939.PubMedCrossRefGoogle Scholar
  52. 52.
    Sato, N., Sanjuan, I. M., Heke, M., Uchida, M., Naef, F., & Brivanlou, A. H. (2003). Molecular signature of human embryonic stem cells and its comparison with the mouse. Developments in Biologicals, 260, 404–413.CrossRefGoogle Scholar
  53. 53.
    James, D., Levine, A. J., Besser, D., & Hemmati-Brivanlou, A. (2005). TGFbeta/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development, 132, 1273–1282.PubMedCrossRefGoogle Scholar
  54. 54.
    Xu, R. H., Chen, X., Li, D. S., Li, R., Addicks, G. C., Glennon, C., et al. (2002). BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nature Biotechnology, 20, 1261–1264.PubMedCrossRefGoogle Scholar
  55. 55.
    Goumans, M. J., & Mummery, C. (2000). Functional analysis of the TGFbeta receptor/Smad pathway through gene ablation in mice. International Journal of Developmental Biology, 44, 253–265.PubMedGoogle Scholar
  56. 56.
    Piccirillo, S. G., Reynolds, B. A., Zanetti, N., Lamorte, G., Binda, E., Broggi, G., et al. (2006). Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature, 444, 761–765.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  1. 1.Laboratory of Molecular Vertebrate EmbryologyThe Rockefeller UniversityNew YorkUSA

Personalised recommendations