Skip to main content

Advertisement

Log in

Itraconazole-Induced the Activation of Adenosine 5'-Monophosphate (Amp)-Activated Protein Kinase Inhibits Tumor Growth of Melanoma via Inhibiting ERK Signaling

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

A Correction to this article was published on 10 March 2023

A Correction to this article was published on 05 October 2022

This article has been updated

Abstract

Itraconazole, an effective broad-spectrum antifungal drug, has been well established for its anticancer activity in cancers including melanoma. However, details concerning its underlying mechanism in melanoma are unclear. This work investigated the function of itraconazole-induced 5'-monophosphate (AMP)-activated protein kinase alpha (AMPKα) in melanoma progression through ERK signaling. The AMPKα level in melanoma tissues and cells was assessed by RT-qPCR and western blot. Survival analysis of patients with melanoma based on the AMPKα expression level was performed according to TCGA database. Melanoma cell proliferation, migration, and invasion were examined using CCK-8, colony formation, wound healing, and Transwell assays. A xenograft tumor model was established to examine the effect of itraconazole on tumor growth in vivo. The AMPKα mRNA and protein levels were reduced in melanoma tissues and cells. A low expression of AMPKα indicated a poor prognosis. Functionally, itraconazole restrained melanoma cell proliferation, migration, and invasion by upregulating AMPKα. Itraconazole activated AMPK signaling and inhibited ERK signaling in melanoma cells. Activation of ERK signaling reversed the effect of itraconazole on cellular process in melanoma. Moreover, itraconazole-induced AMPKα inhibited melanoma tumor growth in vivo by inhibiting ERK signaling. Itraconazole-induced AMPKα inhibits the progression of melanoma by inhibition of ERK signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

References

  1. Cui, S., Wang, J., Wu, Q., Qian, J., Yang, C., & Bo, P. (2017). Genistein inhibits the growth and regulates the migration and invasion abilities of melanoma cells via the FAK/paxillin and MAPK pathways. Oncotarget, 8(13), 21674–21691.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sundstrøm, T., Espedal, H., Harter, P. N., Fasmer, K. E., Skaftnesmo, K. O., Horn, S., Hodneland, E., Mittelbronn, M., Weide, B., Beschorner, R., Bender, B., Rygh, C. B., Lund-Johansen, M., Bjerkvig, R., & Thorsen, F. (2015). Melanoma brain metastasis is independent of lactate dehydrogenase A expression. Neuro-oncology, 17(10), 1374–85.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Siegel, R. L., Miller, K. D., & Jemal, A. (2017). Cancer Statistics, 2017. CA: Cancer Journal for Clinicians, 67(1), 7–30.

    Google Scholar 

  4. Siegel, R. L., Miller, K. D., & Jemal, A. (2015). Cancer statistics, 2015. CA: Cancer Journal for Clinicians, 65(1), 5–29.

    Google Scholar 

  5. Bränström, R., Chang, Y. M., Kasparian, N., Affleck, P., Tibben, A., Aspinwall, L. G., Azizi, E., Baron-Epel, O., Battistuzzi, L., Bruno, W., Chan, M., Cuellar, F., Debniak, T., Pjanova, D., Ertmański, S., Figl, A., Gonzalez, M., Hayward, N. K., Hocevar, M., Kanetsky, P. A., Leaf, S. L., van Nieuwpoort, F. A., Heisele, O., Palmer, J., Peric, B., Puig, S., Ruffin, A. D., Schadendorf, D., Gruis, N. A., Brandberg, Y., & Newton-Bishop, J. (2010). Melanoma risk factors, perceived threat and intentional tanning: an international online survey. European Journal of Cancer Prevention, 19(3), 216–26.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Alexandrov, L. B., Nik-Zainal, S., Wedge, D. C., Aparicio, S. A., Behjati, S., Biankin, A. V., Bignell, G. R., Bolli, N., Borg, A., Børresen-Dale, A. L., Boyault, S., Burkhardt, B., Butler, A. P., Caldas, C., Davies, H. R., Desmedt, C., Eils, R., Eyfjörd, J. E., Foekens, J. A., Greaves, M., Hosoda, F., Hutter, B., Ilicic, T., Imbeaud, S., Imielinski, M., Jäger, N., Jones, D. T., Jones, D., Knappskog, S., Kool, M., Lakhani, S. R., López-Otín, C., Martin, S., Munshi, N. C., Nakamura, H., Northcott, P. A., Pajic, M., Papaemmanuil, E., Paradiso, A., Pearson, J. V., Puente, X. S., Raine, K., Ramakrishna, M., Richardson, A. L., Richter, J., Rosenstiel, P., Schlesner, M., Schumacher, T. N., Span, P. N., Teague, J. W., Totoki, Y., Tutt, A. N., Valdés-Mas, R., van Buuren, M. M., van ‘t Veer, L., Vincent-Salomon, A., Waddell, N., Yates, L. R., Zucman-Rossi, J., Futreal, P. A., McDermott, U., Lichter, P., Meyerson, M., Grimmond, S. M., Siebert, R., Campo, E., Shibata, T., Pfister, S. M., Campbell, P. J., & Stratton, M. R. (2013). Signatures of mutational processes in human cancer. Nature, 500(7463), 415–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Thompson, J. F., Scolyer, R. A., & Kefford, R. F. (2005). Cutaneous melanoma. Lancet, 365(9460), 687–701.

    Article  CAS  PubMed  Google Scholar 

  8. Hepner, A., Salgues, A., Anjos, C. A. D., Sahade, M., Camargo, V. P., Garicochea, B., Shoushtari, A. N., Postow, M. A., Fernandes, G. S., & Munhoz, R. R. (2017). Treatment of advanced melanoma—A changing landscape. Revista Associacao Medica Brasileira, 63(9), 814–823.

    Article  Google Scholar 

  9. Shtivelman, E., Davies, M. Q., Hwu, P., Yang, J., Lotem, M., Oren, M., Flaherty, K. T., & Fisher, D. E. (2014). Pathways and therapeutic targets in melanoma. Oncotarget, 5(7), 1701–52.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chien, A. J., Moore, E. C., Lonsdorf, A. S., Kulikauskas, R. M., Rothberg, B. G., Berger, A. J., Major, M. B., Hwang, S. T., Rimm, D. L., & Moon, R. T. (2009). Activated Wnt/beta-catenin signaling in melanoma is associated with decreased proliferation in patient tumors and a murine melanoma model. Proceedings of the National Academy of Sciences of the United States of America, 106(4), 1193–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Berghoff, A. S., & Preusser, M. (2018). New developments in brain metastases. Therapeutic Advances in Neurological Disorders, 11, 1756286418785502.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hernandez, J. J., Pryszlak, M., Smith, L., Yanchus, C., Kurji, N., Shahani, V. M., & Molinski, S. V. (2017). Giving drugs a second chance: overcoming regulatory and financial hurdles in repurposing approved drugs as cancer therapeutics. Frontiers in Oncology, 7, 273.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Pandya, N. A., Atra, A. A., Riley, U., & Pinkerton, C. R. (2003). Role of itraconazole in haematology/oncology. Archives of Disease in Childhood, 88(3), 258–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chong, C. R., Xu, J., Lu, J., Bhat, S., Sullivan, Jr, D. J., & Liu, J. O. (2007). Inhibition of angiogenesis by the antifungal drug itraconazole. ACS Chemical Biology, 2(4), 263–70.

    Article  CAS  PubMed  Google Scholar 

  15. Kim, J., Tang, J. Y., Gong, R., Kim, J., Lee, J. J., Clemons, K. V., Chong, C. R., Chang, K. S., Fereshteh, M., Gardner, D., Reya, T., Liu, J. O., Epstein, E. H., Stevens, D. A., & Beachy, P. A. (2010). Itraconazole, a commonly used antifungal that inhibits Hedgehog pathway activity and cancer growth. Cancer Cell, 17(4), 388–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kim, J., Aftab, B. T., Tang, J. Y., Kim, D., Lee, A. H., Rezaee, M., Kim, J., Chen, B., King, E. M., Borodovsky, A., Riggins, G. J., Epstein, Jr, E. H., Beachy, P. A., & Rudin, C. M. (2013). Itraconazole and arsenic trioxide inhibit Hedgehog pathway activation and tumor growth associated with acquired resistance to smoothened antagonists. Cancer Cell, 23(1), 23–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kim, D. J., Kim, J., Spaunhurst, K., Montoya, J., Khodosh, R., Chandra, K., Fu, T., Gilliam, A., Molgo, M., Beachy, P. A., & Tang, J. Y. (2014). Open-label, exploratory phase II trial of oral itraconazole for the treatment of basal cell carcinoma. Journal of Clinical Oncology, 32(8), 745–51.

    Article  CAS  PubMed  Google Scholar 

  18. Rudin, C. M., Brahmer, J. R., Juergens, R. A., Hann, C. L., Ettinger, D. S., Sebree, R., Smith, R., Aftab, B. T., Huang, P., & Liu, J. O. (2013). Phase 2 study of pemetrexed and itraconazole as second-line therapy for metastatic nonsquamous non-small-cell lung cancer. Journal of Thoracic Oncology, 8(5), 619–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tsubamoto, H., Sonoda, T., & Inoue, K. (2014). Impact of itraconazole on the survival of heavily pre-treated patients with triple-negative breast cancer. Anticancer Research, 34(7), 3839–44.

    CAS  PubMed  Google Scholar 

  20. Inoue, K., Tsubamoto, H., Isono-Nakata, R., Sakata, K., & Nakagomi, N. (2018). Itraconazole treatment of primary malignant melanoma of the vagina evaluated using positron emission tomography and tissue cDNA microarray: a case report. BMC Cancer, 18(1), 630.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Shackelford, D. B., & Shaw, R. J. (2009). The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nature Reviews Cancer, 9(8), 563–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mihaylova, M. M., & Shaw, R. J. (2011). The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nature Cell Biology, 13(9), 1016–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Faubert, B., Vincent, E. E., Poffenberger, M. C., & Jones, R. G. (2015). The AMP-activated protein kinase (AMPK) and cancer: many faces of a metabolic regulator. Cancer Letters, 356(2 Pt A), 165–70.

    Article  CAS  PubMed  Google Scholar 

  24. Guo, L., Bai, Y., Ji, S., & Ma, H. (2019). MicroRNA‑98 suppresses cell growth and invasion of retinoblastoma via targeting the IGF1R/k‑Ras/Raf/MEK/ERK signaling pathway. International Journal of Oncology, 54(3), 807–820.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Yu, Z., Ye, S., Hu, G., Lv, M., Tu, Z., Zhou, K., & Li, Q. (2015). The RAF-MEK-ERK pathway: targeting ERK to overcome obstacles to effective cancer therapy. Future Medicinal Chemistry, 7(3), 269–89.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang, H., Jiang, H., Zhang, H., Liu, J., Hu, X., & Chen, L. (2019). Ribophorin II potentiates P-glycoprotein- and ABCG2-mediated multidrug resistance via activating ERK pathway in gastric cancer. International Journal of Biological Macromolecules, 128, 574–582.

    Article  CAS  PubMed  Google Scholar 

  27. Tandon, M., Chen, Z., Othman, A. H., & Pratap, J. (2016). Role of Runx2 in IGF-1Rβ/Akt- and AMPK/Erk-dependent growth, survival and sensitivity towards metformin in breast cancer bone metastasis. Oncogene, 35(36), 4730–40.

    Article  CAS  PubMed  Google Scholar 

  28. Head, S. A., Shi, W., Zhao, L., Gorshkov, K., Pasunooti, K., Chen, Y., Deng, Z., Li, R. J., Shim, J. S., Tan, W., Hartung, T., Zhang, J., Zhao, Y., Colombini, M., & Liu, J. O. (2015). Antifungal drug itraconazole targets VDAC1 to modulate the AMPK/mTOR signaling axis in endothelial cells. Proceedings of the National Academy of Sciences of the United States of America, 112(52), E7276–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen, M. B., Liu, Y. Y., Xing, Z. Y., Zhang, Z. Q., Jiang, Q., Lu, P. H., & Cao, C. (2018). Itraconazole-induced inhibition on human esophageal cancer cell growth requires AMPK activation. Molecular Cancer Therapeutics, 17(6), 1229–1239.

    Article  CAS  PubMed  Google Scholar 

  30. Liang, G., Liu, M., Wang, Q., Shen, Y., Mei, H., Li, D., & Liu, W. (2017). Itraconazole exerts its anti-melanoma effect by suppressing Hedgehog, Wnt, and PI3K/mTOR signaling pathways. Oncotarget, 8(17), 28510–28525.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Li, L., Zhao, D., Cheng, G., Li, Q., Chu, Y., Chu, H., Ding, Y., & Li, C. β-elemene suppresses Warburg effect in NCI-H1650 non-small-cell lung cancer cells by regulating the miR-301a-3p/AMPKà axis. Bioscience Reports, 40(6), BSR20194389.

  32. Peng, Y. G., & Zhang, L. (2019). Wedelolactone suppresses cell proliferation and migration through AKT and AMPK signaling in melanoma. The Journal of Dermatological Treatment, 30(4), 389–395.

    Article  CAS  PubMed  Google Scholar 

  33. Chen, L., Chen, Q., Deng, G., Kuang, S., Lian, J., Wang, M., & Zhu, H. (2016). AMPK activation by GSK621 inhibits human melanoma cells in vitro and in vivo. Biochemical and Biophysical Research Communications, 480(4), 515–521.

    Article  CAS  PubMed  Google Scholar 

  34. Kfoury, A., Armaro, M., Collodet, C., Sordet-Dessimoz, J., Giner, M. P., Christen, S., Moco, S., Leleu, M., de Leval, L., Koch, U., Trumpp, A., Sakamoto, K., Beermann, F., & Radtke, F. (2018). AMPK promotes survival of c-Myc-positive melanoma cells by suppressing oxidative stress. Embo j, 37, 5.

    Article  Google Scholar 

  35. Maehara, O., Suda, G., Natsuizaka, M., Ohnishi, S., Komatsu, Y., Sato, F., Nakai, M., Sho, T., Morikawa, K., Ogawa, K., Shimazaki, T., Kimura, M., Asano, A., Fujimoto, Y., Ohashi, S., Kagawa, S., Kinugasa, H., Naganuma, S., Whelan, K. A., Nakagawa, H., Nakagawa, K., Takeda, H., & Sakamoto, N. (2017). Fibroblast growth factor-2-mediated FGFR/Erk signaling supports maintenance of cancer stem-like cells in esophageal squamous cell carcinoma. Carcinogenesis., 38(11), 1073–1083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li, X., Dong, M., Zhou, J., Zhu, D., Zhao, J., & Sheng, W. (2019). C6orf106 accelerates pancreatic cancer cell invasion and proliferation via activating ERK signaling pathway. Molecular and Cellular Biochemistry, 454(1-2), 87–95.

    Article  CAS  PubMed  Google Scholar 

  37. Riverso, M., Montagnani, V., & Stecca, B. (2017). KLF4 is regulated by RAS/RAF/MEK/ERK signaling through E2F1 and promotes melanoma cell growth. Oncogene., 36(23), 3322–3333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ko, G. A., & Cho, S. K. (2018). Phytol suppresses melanogenesis through proteasomal degradation of MITF via the ROS-ERK signaling pathway. Chemico-Biological Interactions, 286, 132–140.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all participators for their help.

Funding

The work was supported by Youth Science and technology project of Zhangjiagang (ZJGQNKJ202001) and Clinical medical science and technology development fund project of Jiangsu University (JLY20180173).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shusheng Wang or Yu Song.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, N., Sun, Y., Yan, L. et al. Itraconazole-Induced the Activation of Adenosine 5'-Monophosphate (Amp)-Activated Protein Kinase Inhibits Tumor Growth of Melanoma via Inhibiting ERK Signaling. Cell Biochem Biophys 80, 331–340 (2022). https://doi.org/10.1007/s12013-021-01048-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-021-01048-y

Keywords

Navigation