Advertisement

Biochemical Properties and Effects on Mitochondrial Respiration of Aqueous Extracts of Basidiomycete Mushrooms

  • Alex Graça ContatoEmail author
  • Tatiane Brugnari
  • Ana Paula Ames Sibin
  • Ana Julia dos Reis Buzzo
  • Anacharis Babeto de Sá-Nakanishi
  • Lívia Bracht
  • Ciomar Aparecida Bersani-Amado
  • Rosane Marina Peralta
  • Cristina Giatti Marques de Souza
Original Paper

Abstract

There are different varieties of mushrooms not yet studied spread all over the planet. The objective of this study was to evaluate biochemical properties and effects on mitochondrial respiration of eight Basidiomycete mushrooms: Flaviporus venustus EF30, Hydnopolyporus fimbriatus EF41 and EF44, Inonotus splitgerberi EF46, Oudemansiella canarii EF72, Perenniporia sp. EF79, Phellinus linteus EF81, and Pleurotus albidus EF84. Total phenols, ABTS, TEAC, FRAP, and ORAC were measured in order to determine the antioxidant capacity. Antimicrobial potential was studied by disc-diffusion and microdilution method. Cytotoxicity was determined in murine peritoneal macrophages. The bioenergetic aspects were evaluated by the uncoupling of the oxidative phosphorylation in mitochondrias. The H. fimbriatus mushroom was the one that presented the most significant results for the antioxidant assays. Three mushrooms presented antimicrobial activity, indicating a potential for formulation of drugs. The results suggest that I. spligerberi has an uncoupling activity, even at the lowest concentration tested, dissipating the mitochondrial electrochemical gradient. On the other hand, P. albidus has effect only on succinate-oxidase activity without influencing mitochondrial respiratory efficiency. Therefore, both interfere negatively in mitochondrial respiration. In relation with the cytotoxicity in peritoneal macrophages, O. canarii and F. venustus were cytotoxic in this type of cells.

Keywords

Oxidative stress Cytotoxicity Mitochondrial respiration Oxidative phosphorylation Mushrooms 

Notes

Acknowledgements

The Conselho Nacional de Desenvolvimento Científico (CNPq) and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for financial support.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the Committee on Ethics in the Use of Animals of the State University of Maringá (CEUA/UEM) under the protocol no. 7669090317.

References

  1. 1.
    Reczek, C. R., & Chandel, N. S. (2014). ROS-dependent signal transduction. Current Opinion in Cell Biology, 33, 8–13.CrossRefGoogle Scholar
  2. 2.
    Contato, A. G., Inácio, F. D., Araújo, C. A. V., Brugnari, T., Maciel, G. M., & Haminiuk, C. W. I. et al. (2019). Comparison between the aqueous extracts of mycelium and basidioma of the edible mushroom Pleurotus pulmonarius: chemical composition and antioxidant analysis. Journal of Food Measurement and Characterization, 2019, 1–8.Google Scholar
  3. 3.
    Sánchez, C.(2017). Reactive oxygen species and antioxidant properties from mushrooms. Synthetic and Systems Biotechnology, 2, 13–22.CrossRefGoogle Scholar
  4. 4.
    Corrêa, R. C. G., Brugnari, T., Bracht, A., Peralta, R. M., & Ferreira, I. C. F. R. (2016). Biotechnological, nutritional and therapeutic uses of Pleurotus spp. (Oyster mushroom) related with chemical composition: a review on the past decade findings. Trends in Food Science and Technology, 50, 103–117.CrossRefGoogle Scholar
  5. 5.
    Brugnari, T., Silva, P. H. A., Contato, A. G., Inácio, F. D., Nolli, M. M., & Kato, C. G. et al.(2018). Effects of cooking and in vitro digestion on antioxidant properties and cytotoxicity of the culinary-medicinal mushroom Pleurotus ostreatoroseus (Agaricomycetes). International Journal of Medicinal Mushrooms, 20, 259–270.CrossRefGoogle Scholar
  6. 6.
    Corrêa, R. C. G., Souza, A. H. P., Calhelha, R. C., Barros, L., Glamoclija, J., & Peralta, R. M., et al. (2015). Bioactive formulations prepared from fruiting bodies and submerged culture mycelia of the Brazilian edible mushroom Pleurotus ostreatoroseus Singer. Food and Function, 6, 2155–2164.CrossRefGoogle Scholar
  7. 7.
    Blackwell, M. (2011). The fungi: 1,2,3 … 5.1 million species? American Journal of Botany, 98, 426–438.CrossRefGoogle Scholar
  8. 8.
    Singleton, V. L., & Rossi Jr, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144–154.Google Scholar
  9. 9.
    Corrêa, R. C. G., Haminiuk, C. W. I., Barros, L., Dias, M. I., Calhelha, R. C., & Kato, C. G. et al.(2017). Stability and biological activity of Merlot (Vitis vinifera) grape pomace phytochemicals after simulated in vitro gastrointestinal digestion and colonic fermentation. Journal of Functional Foods, 36, 410–417.CrossRefGoogle Scholar
  10. 10.
    Koehnlein, E. A., Koehnlein, E. M., Corrêa, R. C. G., Nishida, V. S., Bracht, A., & Peralta, R. M. (2016). Analysis of whole diet in terms of phenolic content and antioxidant capacity: effects of a simulated gastrointestinal digestion. International Journal of Food Sciences and Nutrition, 67, 614–623.CrossRefGoogle Scholar
  11. 11.
    Stojković, D. S., Kovačevic-Grujičić, N., Reis, F. S., Davidović, S., Barros, L., & Popović, J. et al.(2017). Chemical composition of the mushroom Meripilus giganteus Karst. and bioactive properties of its methanolic extract. LWT Food Science and Technology, 79, 454–462.CrossRefGoogle Scholar
  12. 12.
    Voss, D. O., Campello, A. P., & Bacila, M. (1961). The respiratory chain and the oxidative phosphorylation of rat brain mitochondria. Biochemical Biophysical Research Communication, 25, 48–51.CrossRefGoogle Scholar
  13. 13.
    Chance, B., & Williams, G. R. (1955). A simple and rapid assay of oxidative phosphorylation. Nature, 175, 1120–1121.CrossRefGoogle Scholar
  14. 14.
    Lowry, O. H., Rosebrough, N. J., Farr, A. C., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. J Biological Chemistry, 193, 265–275.Google Scholar
  15. 15.
    Simões, M. S., Bracht, L., Parizotto, A. V., Comar, J. F., Peralta, R. M., & Bracht, A. (2017). The metabolic effects of diuron in the rat liver. Environmental Toxicology Pharmacology, 54, 53–61.CrossRefGoogle Scholar
  16. 16.
    Noleto, G. R., Mercê, A. L. R., Iacomini, M., Gorin, P. A. J., & Oliveira, M. B. M. (2004). Yeast mannan-vanadium (IV) complexes and their effect on peritoneal macrophages. Carbohydrate Polymers, 57, 113–122.CrossRefGoogle Scholar
  17. 17.
    Ou, B., Huang, D., Hampsch-Woodill, M., Flanagan, J. A., & Deemer, E. K. (2002). Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays: a comparative study. J Agricultural and Food Chemistry, 50, 3122–3128.CrossRefGoogle Scholar
  18. 18.
    Ferreira, I. C., Barros, L., & Abreu, R. M. (2009). Antioxidants in wild mushrooms. Current Medicinal Chemistry, 16, 1543–1560.CrossRefGoogle Scholar
  19. 19.
    Kozarski, M., Klaus, A., Jakovljevic, D., Todorovic, N., Vunduk, J., & Petrović, P., et al. (2015). Antioxidants of edible mushrooms. Molecules, 20, 19489–19525.CrossRefGoogle Scholar
  20. 20.
    Glamočlija, J., Ćirić, A., Nikolić, M., Feranandes, A., Barros, L., & Calhelha, R. C., et al. (2015). Chemical characterization and biological activity of Chaga (Inonotus obliquus), a medicinal “mushroom”. Journal of Ethnopharmacology, 162, 323–332.CrossRefGoogle Scholar
  21. 21.
    Kang, C. M., Han, D. H., Hwang, H. K., Choi, S. H., & Lee, W. J. (2013). Anticancer effect of Phellinus linteus; potential clinical application in treating pancreatic ductal adenocarcinoma. Journal of Carcinogenesis and Mutagenesis, 89, 1–8.Google Scholar
  22. 22.
    Sliva, D.(2010). Medicinal mushroom Phellinus linteus as an alternative cancer therapy (Review). Experimental and Therapeutic Medicine, 1, 407–411.CrossRefGoogle Scholar
  23. 23.
    Zhu, T., Kim, S. H., & Chen, C. H. (2008). A medicine mushroom: Phellinus linteus. Current Medicinal Chemistry, 15, 1330–1335.CrossRefGoogle Scholar
  24. 24.
    Suabjakyong, P., Nishimura, K., Toida, T., & van Griensven, L. J. (2015). Structural characterization and immunomodulatory effects of polysaccharides from Phellinus linteus and Phellinus igniarius on the IL-6/IL-10 cytokine balance of the mouse macrophage cell lines (RAW 264.7). Food and Function, 6, 2834–2845.CrossRefGoogle Scholar
  25. 25.
    Song, K. S., Li, G., Kim, J. S., Jing, K., Kim, T. D., & Kim, J. P., et al. (2011). Protein-bond polysaccharide from Phellinus linteus inhibits tumor growth, invasion, and angiogenesis and alters Wnt/β-catenin in SW480 human colon cancer cells. BMC Cancer, 22, 307–318.CrossRefGoogle Scholar
  26. 26.
    Hsieh, P. W., Wu, J. B., & Wu, Y. C. (2013). Chemistry and biology of Phellinus linteus. BioMedicine, 3, 106–113.CrossRefGoogle Scholar
  27. 27.
    Ayalla-Zavala, J. F., Silva-Espinoza, B. A., Cruz-Valenzuela, M. R., Villegas-Ochoa, M. A., Esqueda, M., & Gonzáles-Aguiar, G. A. et al.(2012). Antioxidant and antifungal potential of methanol extracts of Phellinus spp. from Sonora, Mexico. Revista iberoamericana de micologia, 29, 132–138.CrossRefGoogle Scholar
  28. 28.
    Plata, K., Rosato, A. E., & Wegrzyn, G. (2009). Staphylococcus aureus as an infectious agent: overview of biochemistry and molecular genetics of its pathogenicity. Acta Biochimica Polonica, 56, 597–612.CrossRefGoogle Scholar
  29. 29.
    Lowy, F. D.(2003). Antimicrobial resistence: the example of Staphylococcus aureus. Journal of Clinical Investigation, 111, 1265–1273.CrossRefGoogle Scholar
  30. 30.
    Gellatly, S. L., & Hancock, R. E. W. (2013). Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathogens Disease, 67, 159–173.CrossRefGoogle Scholar
  31. 31.
    Mesaros, N., Nordmann, P., Plésiat, P., Roussel-Delvallez, M., van Eldere, J., & Glupczynski, Y. et al.(2007). Pseudomonas aeruginosa: resistence and therapeutic options at the turn of the new millennium. Clinical Microbiology and Infection, 13, 560–578.CrossRefGoogle Scholar
  32. 32.
    Petrusco, I., & Tarba, C. (1997). Uncoupling effects of diclofenac and aspirin in the perfused liver and isolated hepatic mitochondria of rat. Biochimica et Biophysica Acta, 1318, 385–394.CrossRefGoogle Scholar
  33. 33.
    Petersen, R. H., Desjardin, D. E., & Krüger, D. (2008). Three types specimens designated in Oudemansiella. Fungal Diversity, 32, 81–96.Google Scholar
  34. 34.
    Rosa, L. H., Machado, K. M. G., Jacob, C. C., Capelari, M., Rosa, C. A., & Zani, C. L. (2003). Screening of Brazilian basidiomycetes for antimicrobial activity. Memórias do Instituto Oswaldo Cruz, 98, 967–974.CrossRefGoogle Scholar
  35. 35.
    Rosa, L. H., Cota, B. B., Machado, K. M. G., Rosa, C. A., & Zani, C. L. (2005). Antifungal and other biological activities from Oudemansiella canarii (Basidiomycota). World Journal of Microbiology and Biotechnology, 21, 983–987.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Alex Graça Contato
    • 1
    • 2
    Email author
  • Tatiane Brugnari
    • 1
  • Ana Paula Ames Sibin
    • 1
  • Ana Julia dos Reis Buzzo
    • 1
  • Anacharis Babeto de Sá-Nakanishi
    • 1
  • Lívia Bracht
    • 1
  • Ciomar Aparecida Bersani-Amado
    • 3
  • Rosane Marina Peralta
    • 1
  • Cristina Giatti Marques de Souza
    • 1
  1. 1.Department of BiochemistryState University of MaringáMaringáBrazil
  2. 2.School of Medicine of Ribeirão PretoUniversity of São PauloRibeirão PretoBrazil
  3. 3.Department of Pharmacology and TherapeuticsState University of MaringáMaringáBrazil

Personalised recommendations