Advertisement

Cell Biochemistry and Biophysics

, Volume 77, Issue 4, pp 279–292 | Cite as

What is the Mechanism of Nitric Oxide Conversion into Nitrosonium Ions Ensuring S-Nitrosating Processes in Living Organisms

  • Anatoly F. VaninEmail author
Review Paper
  • 120 Downloads

Abstract

Here, I present the data testifying that the conversion of free radical NO molecules to nitrosonium ions (NO+), which are necessary for the realization of one of NO biological effects (S-nitrosation), may occur in living organisms after binding NO molecules to loosely bound iron (Fe2+ ions) with the subsequent mutual one-electron oxidation–reduction of NO molecules (their disproportionation). Inclusion of thiol-containing substances as iron ligands into this process prevents hydrolysis of NO+ ions bound to iron thus providing the formation of stable dinitrosyl iron complexes (DNIC) with thiol ligands. Such complexes act in living organisms as donors of NO and NO+, providing stabilization and transfer of these agents via the autocrine and paracrine pathways. Without loosely bound iron (labile iron pool) and thiols participating in the DNIC formation, NO functioning as one of universal regulators of diverse metabolic processes would be impossible.

Keywords

Nitric oxide Nitrosonium ion Dinitrosyl iron complexes S-nitrosation 

Abbreviations

B- and M-DNIC

binuclear and mononuclear dinitrosyl iron complexes

RS-NO

S-nitrosothiols

Notes

Acknowledgements

This work was sponsored by the Russian Academic Excellent Project “5-100” and supported by the Russian Foundation for Fundamental Researches (Grant No. 18-04-00059a).

Compliance with ethical standards

Conflict of interest

The author declares that he has no conflict of interest.

References

  1. 1.
    Ignarro, L. J. (2000). Nitric oxide biology and pharmacology. Zurich, Switzerland: Academic Press.Google Scholar
  2. 2.
    Domingos, P., Prado, A. M., Wong, A., Gehring, C., & Feijo, J. A. (2015). Nitric oxide: a multitasked signaling gas in plants. Molecular Plant8, 506–520.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Stern, A. M., & Zhu, J. (2014). An introduction to nitric oxide sensing and response in bacteria. Advances in Applied Microbiology87, 187–220.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Hogg, N. (2000). Biological chemistry and clinical potential of S-nitrosothiols. Free Radical in Biology and Medicine, 28, 1478–1486.CrossRefGoogle Scholar
  5. 5.
    Gaston, B. M., Carver, J., Doctor, A., & Palmer, L. A. (2003). Physiological roles of S-nitrosylation. Molecular Intervenions, 3, 253–263.CrossRefGoogle Scholar
  6. 6.
    Wink, D. A., Nims, R. W., Darbyshir, J. F., Christodoulou, D., Hanbauer, I., Cox, G. W., Laval, F., Cook, J. J. A., Krishna, M., DeGraff, W. G., & Mitchel, J. B. (1994). Reaction kinetics for nitrosation of cysteine and glutathione in aerobic nitric oxide solutions at neutral pH. Insights into the fate and physiological effects of intermediates generated in the NO/O2 reactions. Chemical Research in Toxicology, 7, 519–525. 133.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Kharitonov, V. G., Sandquist, A. R., & Sharma, V. S. (1995). Kinetics of nitrosation of thiols by nitric oxide in the presence of oxygen. Journal of Biological Chemistry, 270, 28158–28164.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Knowles, R. G., & Moncada, S. (1994). Nitric oxide synthases in mammals. Biochemistry Journal, 298, 249–258.CrossRefGoogle Scholar
  9. 9.
    Bryan, N. S., Rassaf, T., Maloney, R. E., Rodrigez, C. M., Saijo, F., Rodrigez, J. R., & Feelisch, M. (2004). Cellular targets and mechanisms of nitros(yl)ation: an insight into their nature and kinetics in vivo. Proceedings of the National Academy of Sciences of the United States of America, 101, 4308–4313.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Seth, D., Hess, D. T., Hausladen, A., Wang, L. W., Wang, A. J., & Stamler, J. S. (2018). A multiplex enzymatic machinery for cellular protein S-nitrosylation. Molecular Cell, 89, 451–464.CrossRefGoogle Scholar
  11. 11.
    Bosworth, C. A., Toledo, J. C., Zmiewski, J. W., & Lancaster, J. R. (2009). Dinitrosyliron complex and the mechanism(s) of cellular protein nitrosothiol formation. Proceedings of the National Academy of Sciences of the United States of America, 106, 4671–4676.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Foster, M. V., Liu, L., Zeng, M., Hess, D. T., & Stamler, J. S. (2009). A genetic analysis of nitrosative stress. Biochemistry, 48, 792–799.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Borodulin, R. R., Kubrina, L. N., Mikoyan, V. D., Poltorakov, A. P., Shvydkiy, V. O., Serezhenkov, V. A., Yakhontova, E. R., & Vanin, A. F. (2013). Dinitrosyl iron complexes with glutathione as NO and NO+ donors. Nitric Oxide: Biology and Chemistry, 29, 4–16.CrossRefGoogle Scholar
  14. 14.
    Vanin, A. F., Borodulin, R. R., & Mikoyan, V. D. (2017). Dinitrosyl iron complexes with natural thiol containing ligands in aqueous solutions: synthesis and some physico-chemical properties (A methodological review). Nitric Oxide: Biology and Chemistry, 66, 1–9.CrossRefGoogle Scholar
  15. 15.
    Lique, J., & Grosley, D. R. (1999). Transitions probabilities and electron transition moments of the A2+ − X2II and D2+X2II system of nitric oxide. The Journal of Chemical Physics, 111, 7405–7415.CrossRefGoogle Scholar
  16. 16.
    Melia, T. P. (1965). Decomposition of nitric oxide at elevated pressures. Journal of Inorganic and Nuclear Chemistry, 27, 95–98.CrossRefGoogle Scholar
  17. 17.
    Vanin, A. F. (2009). Dinitrosyl iron complexes with thiolate ligands: physico-chemistry, biochemistry and physiology. Nitric Oxide: Biology and Chemistry, 21, 1–13.CrossRefGoogle Scholar
  18. 18.
    Vanin, A. F., & Burbaev, D. Sh (2011). Electronic and spatial structures of water-soluble dinitrosyl iron complexes with thiol-containing ligands underlying their activiy to act as nitric oxide and nitrosonium ion donors. Biophysical Journal, 14, 878236.Google Scholar
  19. 19.
    Vanin, A. F., Poltorakov, A. P., Mikoyan, V. D., Kubrina, L. K., & Burbaev, D. S. (2011). Polynuclear water-soluble dinitrosyl iron complexes with cysteine or glutathione ligands: electron paramagnetic resonance and optical studies. Nitric Oxide: Biology and Chemistry, 23, 136–149.CrossRefGoogle Scholar
  20. 20.
    Vanin, A. F. (2016). Dinitrosyl iron complexes with thiol-containing ligands as a “working form” of endogenous nitric oxide. Nitric Oxide: Biology and Chemistry, 54, 15–29.CrossRefGoogle Scholar
  21. 21.
    Nalbandyan, R. M., Vanin, A. F., Blumenfeld, L. A. (1964). EPR signals of a new type in yeast cells. Abstracts of the Meeting “Free Radical Processes in Biological Systems”, Moscow (p. 18)Google Scholar
  22. 22.
    Vanin, A. F., & Nalbandyan, R. M. (1965). Free radicals of a new type in yeast cells. Biofizika (Russia), 10, 167–168.Google Scholar
  23. 23.
    Vanin, A. F., Blumenfeld, L. A., & Chetverikov, A. G. (1967). Investigation of non-heme iron complexes in cells and tissues by the EPR method. Biofizika (Russia), 12, 829–841.Google Scholar
  24. 24.
    Vithaythil, A. J., Ternberg, B., & Commoner, B. (1965). Electron spin resonance signals of rat liver during chemical carcinogenesis. Nature, 207, 1246–1249.CrossRefGoogle Scholar
  25. 25.
    Roussin, F. Z. (1858). Annales de Chimie et de Physique52, 285–303.Google Scholar
  26. 26.
    Vanin, A. F. (2018). Nitrosonium ions as constituents of dinitrosyl iron complexes with glutathione responsible for their S-nitrosating activivty. Austin Journal of Analytical and Pharmaceutical Chemistry, 5(4), 1109.CrossRefGoogle Scholar
  27. 27.
    Borodulin, R. R., Kubrina, L. N., Shvydkiy, V. O., Lakomkin, V. L., & Vanin, A. F. (2013). A simple protocol for the synthesis of dinitrosyl iron complexes with glutathione: EPR, optical, chromatographic and biological characterization of reaction products. Nitric Oxide: Biology and Chemistry, 35, 110–115.CrossRefGoogle Scholar
  28. 28.
    Vanin, A. F., Malenkova, I. V., & Serezhenkov, V. A. (1997). Iron catalyzes both decomposition and synthesis of S-nitrosothiols: optical and electron paramagnetic stufies. Nitric Oxide: Biology and Chemistry, 1, 191–203.CrossRefGoogle Scholar
  29. 29.
    Vanin, A. F., Papina, A. A., Serezhenkov, V. A., & Koppenol, W. H. (2004). The mechanism of S-nitrosothiol decomposition catalyzed by iron. Nitric Oxide: Biology and Chemistry, 10, 60–73.CrossRefGoogle Scholar
  30. 30.
    Chazov, E. I., Rodnenkov, O. V., Zorin, A. V., Lakomkin, V. L., Gramovich, V. V., Vyborov, O. V., Dragnev, A. G., Timodshin, A. A., Buryachkovskaya, L. I., Abramov, A. A., Massenko, V. P., Arzamastsev, E. V., Kapelko, V. I., & Vanin, A. F. (2012). Hypotensive effect of “Oxacom” containing a dinitrosyl iron complex with glutathione: animal studies and clinical trials on healthy volunteers. Nitric Oxide: Biology and Chemistry, 26, 148–157.CrossRefGoogle Scholar
  31. 31.
    Hickok, J. R., Sahni, S., Shen, H., Arvindt, A., Antoniou, C., Fung, L. M. W., & Thomas, D. D. (2011). Dinitrosyliron complexes are the most abundant nitric oxide-derived cellular adduct: biological parameters of assembly and disappearance? Free Radical Biology and Chemistry, 51, 1558–1566.CrossRefGoogle Scholar
  32. 32.
    Vanin, A. F., Mikoyan, V. D., Kubrina, L. N., Borodulin, R. R., & Burgova, E. N. (2015). Mono- and binuclear dinitrosyl iron complexes with thiol-containng ligands in various biosystems. Biophysics (Translation from Russian), 60, 603–612.Google Scholar
  33. 33.
    Mikoyan, V. D., Burgova, E. N., Borodulin, R. R., & Vanin, A. F. (2017). The binuclear form of dinitrosyl iron complexes with thiol-containing ligands in animal tissues. Nitric Oxide: Biology and Chemistry, 62, 1–10.CrossRefGoogle Scholar
  34. 34.
    Vanin, A. F. (2018). EPR characterization of dinitrosyl iron complexes as an approach to their indentification in biological objects: an overview. Cell Biochemistry and Biophysics, 76, 3–17.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Vanin, A. F., Huisman, A., & van Faassen, E. (2002). Iron dithiocarbamates as spin traps for nitric oxide: pitfalls and successes. Methods in Enzymology, 359, 27–42.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Vanin, A. F., Burgova, E. N., & Adamyan, L. V. (2015). Dinitrosyl iron complexes with glutathione suppress surgically induced experimental endometriosis in rats. Austin Journal of Reproductive Medicine Infertility, 2, 1019–1032.CrossRefGoogle Scholar
  37. 37.
    Burgova, E. N., Khristidis, Y. I., Kurkov, A. V., Mikoyan, V. D., Shekhter, A. B., Adamyan, L. V., Timashev, P. S., & Vanin, A. F. (2019). The inhibiting effect of dinitrosyl iron complexes with thiol-containing ligands on the growth of endometrioid tumours in rats with experimental endometriosis. Cell Biochemistry and Biophysics, 77, 69–77.CrossRefGoogle Scholar
  38. 38.
    Gizatullin, A. R., Akentieva, N. P., Sanina, N. A., Shmatko, N.Yu., Goryachev, N.S., Shkondina, N.I., Prichodenko, T.R., Zhelev, N., & Aldoshin, S.M. (2018). Effect of dinitrosyl iron complexes (NO donors) on the metabolic processes in human fibroblasts. Doklady Akademii Nauk (Translation from Russian), 483, 337–340.Google Scholar
  39. 39.
    Kleschyov, A. L., Mordvintcev, P. I., & Vanin, A. F. (1985). Role of nitric oxide and iron in hypotensive action of nitrosyl iron complexes with various anionic ligands. Studia Biophysica, 105, 93–102.Google Scholar
  40. 40.
    Mülsch, A., Mordvintcev, P., Vanin, A. F., & Busse, R. (1991). The potent vasodilating and guanylyl cyclase activating dinitrosyl-iron(II) complex is stored in a protein-bound form in vascular tissue and its release by thiols. FEBS Letters, 3, 232–256.Google Scholar
  41. 41.
    Mordvintcev, P. I., Putintcev, M. D., Galagan, M. E., Oranovskaya, E. V., Medvedev, O. S., & Vanin, A. F. (1988). Hypotensive activity of dinitrosyl iron complexes with proteins in narcotizes animals. Bulletin of the Kardiology Center SSSR, (1), 46–61.Google Scholar
  42. 42.
    Galagan, M. E., Oranovskaya, E. V., Mordvintcev, P. I., Medvedev, O. S., & Vanin, A. F. (1988). Hypotensive effect of dinitrosyl iron complexes in conscious animals. Bulletin of the Kardiology Center SSSR, (2), 75–80.Google Scholar
  43. 43.
    Vedernikov, Y. P., Mordvintcev, P. I., Malenkova, I. V., & Vanin, A. F. (1992). Similarity between the vasorelaxing activity of dinitrosyl iron cysteine complexes and endothelium-derived relaxing factor. European Journal of Pharmacology, 211, 313–317.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Vedernikov, Y. P., Mordvintcev, P. I., Malenkova, I. V., & Vanin, A. F. (1992). Effect of diethyldithiocarbamate on the activity of nitric oxide-releasing vasodilators. European Journal of Pharmacology, 212, 123–128.CrossRefGoogle Scholar
  45. 45.
    Flitney, F. M., Megson, I. L., Flitney, D. E., & Butler, A. R. (1992). Iron–sulfur nitrosyls: a novel class of nitric oxide generator: mechanisms of vasodilator action on rat isolated tail artery. British Journal of Pharmacology, 107, 842–848.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Vanin, A. F., Mokh, V. P., Serezhenkov, V. A., & Chazov, E. I. (2007). Vasorelaxing activity of stable powder preparations of dinitrosyl iron complexes with cysteine or glutathione. Nitric Oxide: Biology and Chemistry, 16, 322–330.CrossRefGoogle Scholar
  47. 47.
    Lakomkin, V. L., Vanin, A. F., Timoshin, A. A., Kapelko, V. I., & Chazov, E. I. (2007). Long-lasting hypotensive action of dinitrosyl–iron complexes with thiol-containing ligands in conscious normotensive and hypertensive rats. Nitric Oxide: Biology and Chemistry, 16, 413–418.CrossRefGoogle Scholar
  48. 48.
    Gosteev, A. Y., Zorin, A. V., Rodnenkov, O. V., Dragnev, A. G., & Chazov, E. I. (2014). Hemodinamic effect of the synthetic analogue of endogenous nitric oxide (II) donors a dinitrosyl iron complex in hypertensive patients with uncomplicated hypertensive crisis. Therapeutic Archive (Russia), 86, 49–55.Google Scholar
  49. 49.
    Timoshin, A. A., Lakomkin, V. L., Abramov, A. A., Ruuge, E. K., Kapel’ko, V. I., Chazov, E. I., & Vanin, A. F. (2015). The hypotensive effect of the nitric monoxide donor Oxacom at different routs of ins administration to experimental animals. European Journal of Pharmacology, 765, 525–532.CrossRefGoogle Scholar
  50. 50.
    Liu, T., Zhang, M., Terry, M. H., Schroeder, H., Wilson, S. M., Power, G. G., Li, Q., Tiple, T. E., Barchardt, D., & Blood, A. B. (2018). Hemodinamic effects of glutathione-liganded binuclear dinitrosyl iron complex: evidence for nitroxyl generation and modulatiobn by plasma albumin. Molecular Pharmacology, 93, 427–437.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Mordvintcev, P. I., Rudneva, V. G., Vanin, A. F., Shimkevich, L. L., & Khodorov, B. I. (1986). The inhibition effect of low-molecular dinitrosyl iron complexes on platelet aggregation. Biokhimiya (Russia), 51, 1851–1857.Google Scholar
  52. 52.
    Kuznetcov, V. A., Mordvintcev, P. I., Dank, E. K., Yurkiv, V. A., & Vanin, A. F. (1988). Low-molecular and protein-bound dinitrosyl iron complexes as inhibitors of platelet aggregation. Voprosy Meditsinskoi Khimii, 5, 43–46.Google Scholar
  53. 53.
    Lundbrook, S. B., Scrutton, M. C., Joannou, C. L., Cammack, R., & Hughes, M. N. (1995). Inhibition of platelet aggregation by Roussin’s black salt, sodium nitroprusside and other metal nitrosyl complexes. Platelets, 6, 209–212.CrossRefGoogle Scholar
  54. 54.
    Arkhipova, M. M., Mikoyan, V. D., & Vanin, A. F. (2008). Effect of exogenous donors of nitric oxide and inhibitors of its enzymatic synthesis on experimental ischemic thrombosis in conjunctive veins of the rabbit eyes. Biofizika (Russia), 53, 315–325.Google Scholar
  55. 55.
    Remizova, M. I., Kochetygov, N. I., Kerbut, K. A., Lakomkin, V. L., Timoshin, A. A., Burgova, E. N., & Vanin, A. F. (2011). Effect of dinitosyl iron complexes with glutathione on hemorrhagic shock followed by saline treatment. European Journal of Pharmacology, 662, 40–46.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Shamova, E. B., Bichan, O. D., Drozd, E. C., Gorudko, I. V., Chizhik, S. A., Shumaev, K. B., Cherenkevich, S. N., & Vanin, A. F. (2011). Regulation of functional and mechanical properties of platelets and red cells by NO donors. Biofizika (Russia), 56, 265–271.Google Scholar
  57. 57.
    Andreyev-Andriyevsky, A. A., Mikoyan, V. D., Serezhenkov, V. A., & Vanin, A. F. (2011). Penile erectile activity of dinitrosyl iron complexes with thiol-containing ligands. Nitric Oxide: Biology and Chemistry, 24, 217–223.CrossRefGoogle Scholar
  58. 58.
    Shekhter, A. B., Rudenko, T. G., Serezhenkov, V. A., & Vanin, A. F. (2007). Dinitrosyl iron complexes with cysteine or glutathione accelerate skin wound healing. Biofizika (Russia), 52, 534–538.Google Scholar
  59. 59.
    Shekhter, A. B., Rudenko, T. G., Istranov, L. P., Guller, A. E., Borodulin, R. R., & Vanin, A. F. (2015). Dinitrosyl iron complexes with glutathione incorporated into acollagen matrix as a base for the design of drugs accelerating skin wound healing. European Journal of Pharmaceutical Sciences, 78, 8–18.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Shumaev, K. B., Gubkin, A. A., Serezhenkov, V. A., Lobysheva, I. I., Kosmachevskaya, O. V., Ruuge, E. K., & Vanin, A. F. (2008). Interaction of reactive oxygen and nitrogen species with albumin and methemoglobin-bound dinitrosyl iron complexes. Nitric Oxide: Biology and Chemistry, 18, 37–46.CrossRefGoogle Scholar
  61. 61.
    Kapelko, V. I., Lakomkin, V. L., Abramov, A. A., Lukoshkova, E. V., Undrovinas, N. A., Khapchaev, A. Y., & Shirinsky, V. P. (2017). Protective effects of dinitrosyl iron complexes under oxidative stress in the heart. Oxidative Medicine and Cellular Longevity, 9456163. p. 10.Google Scholar
  62. 62.
    Lepka, K., Volbracht, K., Bill, E., Schneider, R., Rios, N., Hildebrandt, T., Ingwesen, J., Prozorovski, T., Lillig, C. H., van Horssen, J., Steinman, L., Hartung, H.-P., Radi, R., Holmgren, A., Aktas, O., Berndt, C. (2017). Iron–sulfur glutaredoxin 2 protects oligodendrocytes against damage induced by nitric oxide release from activated microglia. Glia 1–14.Google Scholar
  63. 63.
    Pisarenko, O., Studneva, I., Timoshin, A., & Veselova, O. (2019). Protective efficacy of dinitrosyl iron complexes with reduced glutsthione in cardioplegia and reperfusion. Pflügers Archiv—European Journal of Physiology, 471, 583–593.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Kim, Y. M., Chung, H. T., Symmons, R. L., & Billiar, T. R. (2000). Cellular nonheme iron content is a determinant of nitric oxide-mediated apoptosis, necrosis, and caspase inhibition. The Journal of Biological Chemistry, 275, 10954–10961.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Kleschyov, A. L., Strand, S., Schmitt, S., Gottfried, D., Skatchkov, M., Sjakste, N., Deiber, M., Umansky, V., & Münzel, T. (2006). Dinitrosyl–iron triggers apoptosis in Jurkat cells despite overexpression of Bcl-2. Free Radical Biology and Medicine, 40, 1340–1348.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Giliano, N. V., Konevega, L. V., Noskin, L. A., Serezhenkov, V. A., Poltorakov, A. P., & Vanin, A. F. (2011). Dinitrosyl iron complexes with thiol-containing ligands and apoptosis: studies with HeLa cell culture. Nitric Oxide: Biology and Chemistry, 24, 151–159.CrossRefGoogle Scholar
  67. 67.
    Vanin, A. F., Menshikov, G. B., Moroz, I. A., Mordvintcev, P. I., Serezhenkov, V. A., & Burbaev, D. S. (1192). The source of non-heme iron that binds nitric oxide in cultivated macrophages. Biochimica Biophysica Acta, 1135, 275–279.CrossRefGoogle Scholar
  68. 68.
    Voevodskaya, N. V., Serezhenkov, V. A., Cooper, C. F., Kubrina, L. N., & Vanin, A. F. (2002). Exogenous ferrous ions is required for the nitric oxide-catalyzed destruction of the iron–sulphur center in adrenodoxin. Biochemistry Journal, 368, 633–639.CrossRefGoogle Scholar
  69. 69.
    Ding, H., & Demple, B. (2000). Direct nitric signal transduction via nitrosylation of iron–sulfur centers in the SoxR transcription activation. Proceedings of the National Academy of Sciences of the United States of America, 97, 5146–5150.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    D’Autreaux, B., Touati, D., Beresh, B., Latour, J.-M., & Michaud-Soret, I. (2002). Direct inhibition by nitric oxide of the transcriptional ferric uptake regulation protein via nitrosylation of iron. Proceedings of the National Academy of Sciences of the United States of America, 99, 16619–16624.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Lo, F. C., Chen, C. L., Lee, C. M., Tsai, M. C., Lu, T. T., Liaw, W. F., & Yu, S. S. F. (2008). A study of NO trafficking from dinitrosyl-iron complexes to the recombinant E. coli transcriptional factor SoxR. Journal of Biological Inorganic Chemistry, 13, 961–972.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Tucker, N. P., Hicks, M. G., Clarke, T. A., Crack, J. C., Chandra, G., Le Brun, N. E., Dixon, R., & Hutchings, M. I. (2008). The trancriptional repressor protein NsrR senses nitric oxide directly via a [2Fe-2S] cluster. PLoS ONE, 11, e3623CrossRefGoogle Scholar
  73. 73.
    Fujikawa, M., Kobayashi, K., & Kozawa, T. (2014). Mechanistic studies on formation of the dinitrosyl iron complex of the [2Fe–2S] cluster of SoxR protein. The Journal of Biochemistry, 156, 163–172.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Crack, J. C., Svistunenko, D. A., Munnoch, J., Thomson, A. J., Hutchings, M. I., & Le Brun, N. E. (2016). Differentiated, promoter-specific response of [4F-4S] NsrR DNA binding to reaction with nitric oxide. The Journal of Biological Chemistry, 291, 8663–8672.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Crack, J.C., Hutchings, M. I., Thomson, A. J., & Le Brun, N. E. (2016). Biochemical properties of paracoccus denitrificans FnrP: reactions with molecular oxygen and nitric oxide. Journal of Biological Inorganic Chemistry, 21, 71–82.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Kudhair, B. K., Hounslow, A. M., Rolfe, M. D., Crack, J. C., Hunt, D. M., Bukston, R. S., Smith, L. J., LeBrun, N. E., Williamson, M. P., & Green, J. (2017). Structure of a WbI protein and implications for NO sensing by M. tuberculosis. Nature, 8, 2280–2290.Google Scholar
  77. 77.
    Vanin, A. F., Ostrovskaya, L. A., Korman, D. B., Mikoyan, V. D., Kubrina, L. N., Borodulin, R. R., Fomina, M. M., Bluchterova, N. V., & Rykova, V. A. (2015). An anti-nitrosative system as a factor of malignant tumor resistance to the cytotoxic effect of nitrogen monoxide. Biophysics (Translation from Russian), 60, 121–125.Google Scholar
  78. 78.
    Vanin, A. F., Ostrovskaya, L. A., Korman, D. B., Kubrina, L. N., Borodulin, R. R., Fomina, M. M., Bluchterova, N. V., Rykova, V. A., & Timoshin, A. A. (2015). The anti-tumor activity of the S-nitrosoglutathione and dinitrosyl iron complexes with glutathione: comparative studies. Biophysics (Translation from Russian), 60, 963–969.Google Scholar
  79. 79.
    Vanin, A. F., Ostrovskaya, L. A., Korman, D. B., Rykova, V. A., Bluchterova, N. V., & Fomina, M. M. (2017). The anti-tumor effect of dinitrosyl iron complexes with glutathione in murine solid-tumor model, Biophysics. Biophysics (Translation from Russian), 62, 479–484.Google Scholar
  80. 80.
    Wu, S.-C., Lu, C.-Y., Chen, Y.-L., Lo, F.-C., Wang, T.-Y., Chen, Y.-J., Yuan, S.-S., Liaw, W.-F., & Wang, Y.-M. (2016). Water-soluble dinitrosyl iron complexes (DNIC); a nitric oxide vehicle triggering cancer cell death via apoptosis. Inorganic Chemistry, 55, 9383–9392.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Badroff, C., Fichtscherer, B., Mülsch, A., Zeicher, A. M., & Dimeller, S. (2001). Selective delivery of nitric oxide to a cellular target: a pseudosubstrate-coupled dinitrosyl iron complex inhibits th endoviral protease 2.A. Nitric Oxide: Biology and Chemistry, 6, 305–312.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.N.N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences; Institute for Regenerative MedicineI.M. Sechenov First Moscow State Medical UniversityMoscowRussia

Personalised recommendations