Advertisement

Uniform Field Resonators for EPR Spectroscopy: A Review

  • James S. Hyde
  • Jason W. Sidabras
  • Richard R. Mett
Original Paper
  • 97 Downloads

Abstract

Cavity resonators are often used for electron paramagnetic resonance (EPR). Rectangular TE102 and cylindrical TE011 are common modes at X-band even though the field varies cosinusoidally along the Z-axis. The authors found a way to create a uniform field (UF) in these modes. A length of waveguide at cut-off was introduced for the sample region, and tailored end sections were developed that supported the microwave resonant mode. This work is reviewed here. The radio frequency (RF) magnetic field in loop-gap resonators (LGR) at X-band is uniform along the Z-axis of the sample, which is a benefit of LGR technology. The LGR is a preferred structure for EPR of small samples. At Q-band and W-band, the LGR often exhibits nonuniformity along the Z-axis. Methods to trim out this nonuniformity, which are closely related to the methods used for UF cavity resonators, are reviewed. In addition, two transmission lines that are new to EPR, dielectric tube waveguide and circular ridge waveguide, were recently used in UF cavity designs that are reviewed. A further benefit of UF resonators is that cuvettes for aqueous samples can be optimum in cross section along the full sample axis, which improves quantification in EPR spectroscopy of biological samples.

Keywords

Uniform field EPR Ridge waveguide Dielectric tube resonator Q-band W-band 

Notes

Acknowledgements

This work was supported by grant P41 EB001980 from the National Institutes of Health. Jason W. Sidabras is currently funded by the European Union Horizon 2020 Marie Skłodowska-Curie Fellowship (Act-EPR; http://act-epr.org) and the Max Planck Society.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Mett, R. R., Froncisz, W., & Hyde, J. S. (2001). Axially uniform resonant cavity modes for potential use in electron paramagnetic resonance spectroscopy. The Review of Scientific Instruments, 72, 4188–4200.CrossRefGoogle Scholar
  2. 2.
    Anderson, J. R., Mett, R. R., & Hyde, J. S. (2002). Cavities with axially uniform fields for use in electron paramagnetic resonance. II. Free space generalization. The Review of Scientific Instruments, 73, 3027–3037.CrossRefGoogle Scholar
  3. 3.
    Hyde, J. S., Mett, R. R., & Anderson, J. R. (2002). Cavities with axially uniform fields for use in electron paramagnetic resonance. III. Re-entrant geometries. Rev Sci Instrum, 73, 4003–4009.CrossRefGoogle Scholar
  4. 4.
    Hyde J. S., Mett R. R., Froncisz W., Anderson J. R. (2004) Cavity resonator for electron paramagnetic resonance spectroscopy having axially uniform field, US Patent 6,828,789.Google Scholar
  5. 5.
    Sidabras, J. W., Sarna, T., Mett, R. R., & Hyde, J. S. (2017). Uniform field loop-gap resonator and rectangular TEU02 for aqueous sample EPR at 94GHz. Journal of Magnetic Resonance, 282, 129–135.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Mett, R. R., Sidabras, J. W., & Hyde, J. S. (2007). Uniform radio frequency fields in loop-gap resonators for EPR spectroscopy. Applied Magnetic Resonance, 31, 573.CrossRefGoogle Scholar
  7. 7.
    Hyde, J. S., & Mett, R. R. (2017). EPR uniform field signal enhancement by dielectric tubes in cavities. Applied Magnetic Resonance, 48, 1185–1204.CrossRefPubMedGoogle Scholar
  8. 8.
    Sidabras, J. W., Reijerse, E. J., & Lubitz, W. (2017). Uniform field re-entrant cylindrical TE01U cavity for pulse electron paramagnetic resonance spectroscopy at Q-band. Applied Magnetic Resonance, 48, 1301–1314.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hyde, J. S., Eaton, S. S., & Eaton, G. R. (2006). EPR at work. Concepts in Magnetic Resonance, 28A, 82.Google Scholar
  10. 10.
    Hyde, J. S., & Froncisz, W. (1989). Loop gap resonators. In A. J. Hoff ed, Advanced EPR, Applications in Biology and Biochemistry (pp. 277–306). Amsterdam: Elsevier.Google Scholar
  11. 11.
    Rempel R. C., Ward C. E., Sullivan R. T., St. Clair M. W., Weaver H. E. (1964) Gyromagnetic resonance method and apparatus, US Patent 3,122,703.Google Scholar
  12. 12.
    Sidabras, J. W., Mett, R. R., & Hyde, J. S. (2017). Extruded dielectric sample tubes of complex cross section for EPR signal enhancement of aqueous samples. Journal of Magnetic Resonance, 277, 45–51.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Hyde, J. S., & Mett, R. R. (2002). Aqueous sample considerations in uniform field resonators for electron paramagnetic resonance spectroscopy. Current Topics in Biophysics, 26, 7–14.Google Scholar
  14. 14.
    Wood, R. L., Froncisz, W., & Hyde, J. S. (1984). The loop-gap resonator. II. Controlled return flux three-loop, two-gap microwave resonators for ENDOR and ESR spectroscopy. Journal of Magnetic Resonance, 58, 243–253.Google Scholar
  15. 15.
    Froncisz, W., Oles, T., & Hyde, J. S. (1986). Q‐band loop‐gap resonator. The Review of Scientific Instruments, 57, 1095–1099.CrossRefGoogle Scholar
  16. 16.
    Hyde, J. S., Yin, J.-J., Subczynski, W. K., Camenisch, T. G., Ratke, J. J., & Froncisz, W. (2004). Spin-label EPR T1 values using saturation recovery from 2 to 35 GHz. The Journal of Physical Chemistry B, 108, 9524–9529.CrossRefGoogle Scholar
  17. 17.
    Sidabras, J. W., Mett, R. R., Froncisz, W., Camenisch, T. G., Anderson, J. R., & Hyde, J. S. (2007). Multipurpose EPR loop-gap resonator and cylindrical TE011 cavity for aqueous samples at 94 GHz. The Review of Scientific Instruments, 78, 034701.CrossRefPubMedGoogle Scholar
  18. 18.
    Hyde, J. S., Strangeway, R. A., Camenisch, T. G., Ratke, J. J., & Froncisz, W. (2010). W-band frequency-swept EPR. Journal of Magnetic Resonance, 205, 93–101.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Strangeway, R. A., Hyde, J. S., Camenisch, T. G., Sidabras, J. W., Mett, R. R., Anderson, J. R., Ratke, J. J., & Subczynski, W. K. (2017). Broadband W-band rapid frequency sweep considerations for Fourier transform EPR. Cell Biochemistry and Biophysics, 75, 259–273.CrossRefPubMedGoogle Scholar
  20. 20.
    Mainali, L., Sidabras, J. W., Camenisch, T. G., Ratke, J. J., Raguz, M., Hyde, J. S., & Subczynski, W. K. (2014). Spin-label W-band EPR with seven-loop-six-gap resonator: Application to lens membranes derived from eyes of a single donor. Applied Magnetic Resonance, 45, 1343–1358.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Chen, C.-C. (1974). Quadruple ridge-loaded circular waveguide phased arrays. IEEE Transactions on Antennas and Propagation, 22, 481–483.CrossRefGoogle Scholar
  22. 22.
    Sangster, A. J., & Grant, J. (2009). Mode degeneracy in circular cylindrical ridge waveguides. Progress in Electromagnetics Research, 9, 75–83.CrossRefGoogle Scholar
  23. 23.
    Slater, J. C. (1950). Microwave electronics, D. Princeton, NJ: Van Nostrand.Google Scholar
  24. 24.
    Rong, Y., & Zaki, K. A. (2000). Characteristics of generalized rectangular and circular ridge waveguides. IEEE Transactions on Microwave Theory and Techniques, 48, 258–265.CrossRefGoogle Scholar
  25. 25.
    Mett, R. R., & Hyde, J. S. (2003). Aqueous flat cells perpendicular to the electric field for use in electron paramagnetic resonance spectroscopy. Journal of Magnetic Resonance, 165, 137–152.CrossRefPubMedGoogle Scholar
  26. 26.
    Sidabras, J. W., Mett, R. R., & Hyde, J. S. (2005). Aqueous flat-cells perpendicular to the electric field for use in electron paramagnetic resonance spectroscopy, II: design. Journal of Magnetic Resonance, 172, 333–341.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Biomedical EPR Center, Department of BiophysicsMedical College of WisconsinMilwaukeeUSA
  2. 2.Max Planck Institute for Chemical Energy Conversion, Department of Biophysical ChemistryMülheim an der RuhrGermany
  3. 3.Department of Physics and ChemistryMilwaukee School of EngineeringMilwaukeeUSA

Personalised recommendations