Cell Biochemistry and Biophysics

, Volume 75, Issue 3–4, pp 359–367 | Cite as

EPR Technology as Sensitive Method for Oxidative Stress Detection in Primary and Secondary Keratinocytes Induced by Two Selected Nanoparticles

  • S. B. LohanEmail author
  • S. Ahlberg
  • A. Mensch
  • D. Höppe
  • M. Giulbudagian
  • M. Calderón
  • S. Grether-Beck
  • J. Krutmann
  • J. Lademann
  • M. C. Meinke
Original Paper


Exogenous factors can cause an imbalance in the redox state of biological systems, promoting the development of oxidative stress, especially reactive oxygen species (ROS). To monitor the intensity of ROS production in secondary keratinocytes (HaCaT) by diesel exhaust particles and thermoresponsive nanogels (tNG), electron paramagnetic resonance (EPR) spectroscopy after 1 and 24 h of incubation, respectively, was applied. Their cytotoxicity was analyzed by a cell viability assay (XTT). For tNG an increase in the cell viability and ROS production of 10% was visible after 24 h, whereas 1 h showed no effect. A ten times lower concentration of diesel exhaust particles exhibited no significant toxic effects on HaCaT cells for both incubation times, thus normal adult human keratinocytes (NHK) were additionally analyzed by XTT and EPR spectroscopy. Here, after 24 h a slight increase of 18% in metabolic activity was observed. However, this effect could not be explained by the ROS formation. A slight increase in the ROS production was only visible after 1 h of incubation time for HaCaT (9%) and NHK (14%).


Oxidative stress Electron paramagnetic resonance spectroscopy Nanoparticles Cell viability 



The authors acknowledge the support of the Deutsche Forschungsgemeinschaft (DFG)/ German Research Foundation via SFB 1112, Projects A04, B01.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing interests.


  1. 1.
    Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T., Mazur, M., & Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. The International Journal of Biochemistry & Cell Biology, 39, 44–84.CrossRefGoogle Scholar
  2. 2.
    Bast, A., & Goris, R. J. (1989). Oxidative stress. Biochemistry and human disease. Pharmaceutisch weekblad. Scientific Edition, 11, 199–206.CrossRefPubMedGoogle Scholar
  3. 3.
    Harman, D. (1956). Aging: A theory based on free radical and radiation chemistry. Journal of Gerontology, 11, 298–300.CrossRefPubMedGoogle Scholar
  4. 4.
    Valko, M., Izakovic, M., Mazur, M., Rhodes, C. J., & Telser, J. (2004). Role of oxygen radicals in DNA damage and cancer incidence. Molecular and Cellular Biochemistry, 266, 37–56.CrossRefPubMedGoogle Scholar
  5. 5.
    Ceriello, A. (2008). Possible role of oxidative stress in the pathogenesis of hypertension. Diabetes Care, 31(Suppl 2), S181–S184.CrossRefPubMedGoogle Scholar
  6. 6.
    Cheeseman, K. H., & Slater, T. F. (1993). An introduction to free radical biochemistry. British Medical Bulletin, 49, 481–493.CrossRefPubMedGoogle Scholar
  7. 7.
    Dikalov, S. I., & Harrison, D. G. (2014). Methods for detection of mitochondrial and cellular reactive oxygen species. Antioxidants & Redox Signaling, 20, 372–382.CrossRefGoogle Scholar
  8. 8.
    Kalyanaraman, B., Darley-Usmar, V., Davies, K. J., Dennery, P. A., Forman, H. J., Grisham, M. B., et al. (2012). Measuring reactive oxygen and nitrogen species with fluorescent probes: Challenges and limitations. Free Radical Biology & Medicine, 52, 1–6.CrossRefGoogle Scholar
  9. 9.
    Kundu, K., Knight, S. F., Willett, N., Lee, S., Taylor, W. R., & Murthy, N. (2009). Hydrocyanines: A class of fluorescent sensors that can image reactive oxygen species in cell culture, tissue, and in vivo. Angewandte Chemie, 48, 299–303.CrossRefPubMedGoogle Scholar
  10. 10.
    Delaney, C. A., Green, I. C., Lowe, J. E., Cunningham, J. M., Butler, A. R., Renton, L., et al. (1997). Use of the comet assay to investigate possible interactions of nitric oxide and reactive oxygen species in the induction of DNA damage and inhibition of function in an insulin-secreting cell line. Mutation Research, 375, 137–146.CrossRefPubMedGoogle Scholar
  11. 11.
    Fang, L., Neutzner, A., Turtschi, S., Flammer, J., & Mozaffarieh, M. (2015). Comet assay as an indirect measure of systemic oxidative stress. Journal of Visualized Experiments, 99, e52763.Google Scholar
  12. 12.
    Albrecht, S., Ahlberg, S., Beckers, I., Kockott, D., Lademann, J., Paul, V., et al. (2016). Effects on detection of radical formation in skin due to solar irradiation measured by EPR spectroscopy. Methods, 109, 44–54.CrossRefPubMedGoogle Scholar
  13. 13.
    Ahlberg, S., Rancan, F., Epple, M., Loza, K., Hoppe, D., Lademann, J., et al. (2016). Comparison of different methods to study effects of silver nanoparticles on the pro- and antioxidant status of human keratinocytes and fibroblasts. Methods, 109, 55–63.CrossRefPubMedGoogle Scholar
  14. 14.
    Lohan, S. B., Muller, R., Albrecht, S., Mink, K., Tscherch, K., Ismaeel, F., et al. (2016). Free radicals induced by sunlight in different spectral regions - in vivo versus ex vivo study. Experimental Dermatology, 25, 380–385.CrossRefPubMedGoogle Scholar
  15. 15.
    Mrakic-Sposta, S., Gussoni, M., Montorsi, M., Porcelli, S., & Vezzoli, A. (2014). A quantitative method to monitor reactive oxygen species production by electron paramagnetic resonance in physiological and pathological conditions. Oxidative Medicine and Cellular Longevity, 2014, 306179.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Lohan, S. B., Bauersachs, S., Ahlberg, S., Baisaeng, N., Keck, C. M., Muller, R. H., et al. (2015). Ultra-small lipid nanoparticles promote the penetration of coenzyme Q10 in skin cells and counteract oxidative stress. European Journal of Pharmaceutics and Biopharmaceutics, 89, 201–207.CrossRefPubMedGoogle Scholar
  17. 17.
    Fuchs, J., Groth, N., Herrling, T., & Zimmer, G. (1997). Electron paramagnetic resonance studies on nitroxide radical 2,2,5,5-tetramethyl-4-piperidin-1-oxyl (TEMPO) redox reactions in human skin. Free Radical Biology & Medicine, 22, 967–976.CrossRefGoogle Scholar
  18. 18.
    Lauer, A. C., Groth, N., Haag, S. F., Darvin, M. E., Lademann, J., & Meinke, M. C. (2013). Radical scavenging capacity in human skin before and after vitamin C uptake: An in vivo feasibility study using electron paramagnetic resonance spectroscopy. The Journal of Investigative Dermatology, 133, 1102–1104.CrossRefPubMedGoogle Scholar
  19. 19.
    Venugopal, J. R., & Ramakrishna, S. (2016). Nanotechnology: 21st century revolution in restorative healthcare. Nanomedicine, 11, 1511–1513.CrossRefPubMedGoogle Scholar
  20. 20.
    Wilczewska, A. Z., Niemirowicz, K., Markiewicz, K. H., & Car, H. (2012). Nanoparticles as drug delivery systems. Pharmacological Reports, 64, 1020–1037.CrossRefPubMedGoogle Scholar
  21. 21.
    Moller, P., Jacobsen, N. R., Folkmann, J. K., Danielsen, P. H., Mikkelsen, L., Hemmingsen, J. G., et al. (2010). Role of oxidative damage in toxicity of particulates. Free Radical Research, 44, 1–46.CrossRefPubMedGoogle Scholar
  22. 22.
    Lai, P., Lechtman, E., Mashouf, S., Pignol, J. P., & Reilly, R. M. (2016). Depot system for controlled release of gold nanoparticles with precise intratumoral placement by permanent brachytherapy seed implantation (PSI) techniques. International Journal of Pharmaceutics, 515, 729–739.CrossRefPubMedGoogle Scholar
  23. 23.
    Ishihara, T., Kaneko, K., Ishihara, T., & Mizushima, T. (2014). Development of biodegradable nanoparticles for liver-specific ribavirin delivery. Journal of Pharmaceutical Sciences, 103, 4005–4011.CrossRefPubMedGoogle Scholar
  24. 24.
    Sahle, F. F., Giulbudagian, M., Bergueiro, J., Lademann, J., & Calderon, M. (2017). Dendritic polyglycerol and N-isopropylacrylamide based thermoresponsive nanogels as smart carriers for controlled delivery of drugs through the hair follicle. Nanoscale, 9, 172–182.CrossRefPubMedGoogle Scholar
  25. 25.
    Rancan, F., Giulbudagian, M., Jurisch, J., Blume-Peytavi, U., Calderon, M., & Vogt, A. (2016). Drug delivery across intact and disrupted skin barrier: Identification of cell populations interacting with penetrated thermoresponsive nanogels. European Journal of Pharmaceutics and Biopharmaceutics, 116, 4–11.Google Scholar
  26. 26.
    Giulbudagian, M., Rancan, F., Klossek, A., Yamamoto, K., Jurisch, J., Neto, V. C., et al. (2016). Correlation between the chemical composition of thermoresponsive nanogels and their interaction with the skin barrier. Journal of Controlled Release , 243, 323–332.CrossRefPubMedGoogle Scholar
  27. 27.
    Cuggino, J. C., Alvarez, I. C. I., Strumia, M. C., Welker, P., Licha, K., Steinhilber, D., et al. (2011). Thermosensitive nanogels based on dendritic polyglycerol and N-isopropylacrylamide for biomedical applications. Soft Matter, 7, 11259–11266.CrossRefGoogle Scholar
  28. 28.
    Giulbudagian, M., Asadian-Birjand, M., Steinhilber, D., Achazi, K., Molina, M., & Calderon, M. (2014). Fabrication of thermoresponsive nanogels by thermo-nanoprecipitation and in situ encapsulation of bioactives. Polymer Chemistry, 5, 6909–6913.CrossRefGoogle Scholar
  29. 29.
    Asadian-Birjand, M., Bergueiro, J., Rancan, F., Cuggino, J. C., Mutihac, R. C., Achazi, K., et al. (2015). Engineering thermoresponsive polyether-based nanogels for temperature dependent skin penetration. Polymer Chemistry, 6, 5827–5831.CrossRefGoogle Scholar
  30. 30.
    Rancan, F., Asadian-Birjand, M., Dogan, S., Graf, C., Cuellar, L., Lommatzsch, S., et al. (2016). Effects of thermoresponsivity and softness on skin penetration and cellular uptake of polyglycerol-based nanogels. Journal of Controlled Release, 228, 159–169.CrossRefPubMedGoogle Scholar
  31. 31.
    Ahlberg, S., Meinke, M. C., Werner, L., Epple, M., Diendorf, J., Blume-Peytavi, U., et al. (2014). Comparison of silver nanoparticles stored under air or argon with respect to the induction of intracellular free radicals and toxic effects toward keratinocytes. European Journal of Pharmaceutics and Biopharmaceutics, 88, 651–657.CrossRefPubMedGoogle Scholar
  32. 32.
    Kuhn, D. M., Balkis, M., Chandra, J., Mukherjee, P. K., & Ghannoum, M. A. (2003). Uses and limitations of the XTT assay in studies of Candida growth and metabolism. Journal of Clinical Microbiology, 41, 506–508.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Riss, T. L., Moravec, R. A., Niles, A. L., Duellman, S., Benink, H. A., Worzella, T. J., et al. (2004). Cell viability assays. In G. S. Sittampalam, N. P. Coussens, H. Nelson, M. Arkin, D. Auld, C. Austin, et al. (Eds.) Assay guidance manual. The National Center for Advancing Translational Sciences (NCATS), Bethesda, MD.Google Scholar
  34. 34.
    Saitoh, Y., Ohta, H., & Hyodo, S. (2016). Protective effects of polyvinylpyrrolidone-wrapped fullerene against intermittent ultraviolet-A irradiation-induced cell injury in HaCaT cells. Journal of Photochemistry and Photobiology B, 163, 22–29.CrossRefGoogle Scholar
  35. 35.
    Gerecke, C., Edlich, A., Giulbudagian, M., Schumacher, F., Zhang, N., Said, A., et al. (2017). Biocompatibility and characterization of polyglycerol-based thermoresponsive nanogels designed as novel drug delivery systems and their intracellular fate in keratinocytes. Nanotoxicology, Under review.Google Scholar
  36. 36.
    Zhang, Y., Chan, H. F., & Leong, K. W. (2013). Advanced materials and processing for drug delivery: the past and the future. Advanced Drug Delivery Reviews, 65, 104–120.CrossRefPubMedGoogle Scholar
  37. 37.
    Dockery, D. W. (2009). Health effects of particulate air pollution. Annals of Epidemiology, 19, 257–263.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Kuhlbusch, T. A., John, A. C., & Quass, U. (2009). Sources and source contributions to fine particles. Biomarkers, 14(Suppl 1), 23–28.CrossRefPubMedGoogle Scholar
  39. 39.
    Ema, M., Naya, M., Horimoto, M., & Kato, H. (2013). Developmental toxicity of diesel exhaust: A review of studies in experimental animals. Reproductive Toxicology, 42, 1–17.CrossRefPubMedGoogle Scholar
  40. 40.
    Fiorito, S., Mastrofrancesco, A., Cardinali, G., Rosato, E., Salsano, F., Sheng Su, D. et al. (2011). Effects of carbonaceous nanoparticles from low-emission and older diesel engines on human skin cells. Carbon, 49, 1–9.Google Scholar
  41. 41.
    Takenaka, S., Takenaka-Dornhöfer, H., & Muhle, H. (1986). Alveolar distribution of fly ash and of titanium dioxide after long-term inhalation by Wistar rats. Journal of Aerosol Science, 17, 361–364.CrossRefGoogle Scholar
  42. 42.
    Droge, W. (2002). Free radicals in the physiological control of cell function. Physiological Reviews, 82, 47–95.CrossRefPubMedGoogle Scholar
  43. 43.
    Choi, M., & Lee, C. (2015). Immortalization of primary Keratinocytes and its application to skin research. Biomolecules & Therapeutics, 23, 391–399.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • S. B. Lohan
    • 1
    • 2
    Email author
  • S. Ahlberg
    • 1
    • 2
  • A. Mensch
    • 1
    • 2
  • D. Höppe
    • 1
    • 2
  • M. Giulbudagian
    • 3
  • M. Calderón
    • 3
  • S. Grether-Beck
    • 4
  • J. Krutmann
    • 4
  • J. Lademann
    • 1
    • 2
  • M. C. Meinke
    • 1
    • 2
  1. 1.Charité – Universitätsmedizin Berlin, corporate member of Freie Universität BerlinHumboldt-Universität zu BerlinBerlinGermany
  2. 2.Berlin Institute of Health, Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous PhysiologyCharité—Universitätsmedizin BerlinBerlinGermany
  3. 3.Freie Universität Berlin, Institute of Chemistry and BiochemistryBerlinGermany
  4. 4.Leibniz Research Institute for Environmental MedicineDüsseldorfGermany

Personalised recommendations