Advertisement

Cell Biochemistry and Biophysics

, Volume 75, Issue 1, pp 65–78 | Cite as

VP40 of the Ebola Virus as a Target for EboV Therapy: Comprehensive Conformational and Inhibitor Binding Landscape from Accelerated Molecular Dynamics

  • Marissa Balmith
  • Mahmoud E.S. Soliman
Original Paper

Abstract

The first account of the dynamic features of the loop region of VP40 of the Ebola virus was studied using accelerated molecular dynamics simulations and reported herein. Among the proteins of the Ebola virus, the matrix protein (VP40) plays a significant role in the virus lifecycle thereby making it a promising therapeutic target. Of interest is the newly elucidated N-terminal domain loop region of VP40 comprising residues K127, T129, and N130 which when mutated to alanine have demonstrated an unrecognized role for N-terminal domain-plasma membrane interaction for efficient VP40-plasma membrane localization, oligomerization, matrix assembly, and egress. The molecular understanding of the conformational features of VP40 in complex with a known inhibitor still remains elusive. Using accelerated molecular dynamics approaches, we conducted a comparative study on VP40 apo and bound systems to understand the conformational features of VP40 at the molecular level and to determine the effect of inhibitor binding with the aid of a number of post-dynamic analytical tools. Significant features were seen in the presence of an inhibitor as per molecular mechanics/generalized born surface area binding free energy calculations. Results revealed that inhibitor binding to VP40 reduces the flexibility and mobility of the protein as supported by root mean square fluctuation and root mean square deviation calculations. The study revealed a characteristic “twisting” motion and coiling of the loop region of VP40 accompanied by conformational changes in the dimer interface upon inhibitor binding. We believe that results presented in this study will ultimately provide useful insight into the binding landscape of VP40 which could assist researchers in the discovery of potent Ebola virus inhibitors for anti-Ebola therapies.

Graphical Abstract

Open image in new window

Keywords

Ebola virus Loop region Dimerization Accelerated molecular dynamics Binding free energy 

Notes

Acknowledgements

The authors would like to acknowledge the financial support from NRF (UKZN) and the centre of High Performance computing in Cape Town (www.chpc.ac.za) for providing computational facilities.

Compliance with Ethical Standards

Conflicts of Interest

The authors declare that they have no competing interests.

Supplementary material

12013_2017_783_MOESM1_ESM.docx (1.3 mb)
Supplementary Information

References

  1. 1.
    Peters, C. J., & Leduc, J. W. (1999). An introduction to Ebola: The virus and the disease. The Journal of Infectious Diseases, 179, ix–xvi.CrossRefPubMedGoogle Scholar
  2. 2.
    Casillas, A. M., Nyamathi, A. M., Sosa, A., Wilder, C. L., & Sands, H. (2003). A current review of Ebola virus: Pathogenesis, clinical presentation, and diagnostic assessment. Biological Research for Nursing, 4, 268–275.CrossRefPubMedGoogle Scholar
  3. 3.
    Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The Protein Data Bank. Nucleic Acids Research, 28, 235–242.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Radzimanowski, J., Effantin, G., & Weissenhorn, W. (2014). Conformational plasticity of the Ebola virus matrix protein. Protein Science: A Publication of the Protein Society, 23, 1519–1527.CrossRefGoogle Scholar
  5. 5.
    Selaković, Ž., Opsenica, D., Eaton, B., Retterer, C., Bavari, S., Burnett, J. C., Šolaja, B. A., & Panchal, R. G. (2012). A limited structural modification results in a significantly more efficacious diazachrysene-based filovirus inhibitor. Viruses, 4, 1279–1288.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Ekins, S., Freundlich, J. S., & Coffee, M. (2014). A common feature pharmacophore for FDA-approved drugs inhibiting the Ebola virus. F1000Research, 3, 277.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Dessen, A., Volchkov, V., Dolnik, O., Klenk, H. D., & Weissenhorn, W. (2000). Crystal structure of the matrix protein VP40 from Ebola virus. The EMBO Journal, 19, 4228–4236.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Adu-Gyamfi, E., Soni, S. P., Jee, C. S., Digman, M. A., Gratton, E., & Stahelin, R. V. (2014). A loop region in the N-terminal domain of ebola virus VP40 is important in viral assembly, Budding, and egress. Viruses, 6, 3837–3854.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Yuan, S. (2015). Possible FDA-approved drugs to treat Ebola virus infection. Infect. Dis. Poverty, 4, 23.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Torre, G. L., Nicosia, V., & Cardi, M. (2014). Ebola: A review on the state of the art on prevention and treatment. Asian Pacific. Journal of. Tropical. Biomedicine., 4, 925–927.CrossRefGoogle Scholar
  11. 11.
    Bhakat, S., Martin, A. J. M., & Soliman, M. E. S. (2014). An integrated molecular dynamics, principal component analysis and residue interaction network approach reveals the impact of M184V mutation on HIV reverse transcriptase resistance to lamivudine. Molecular BioSystems, 10, 2215–2228.CrossRefPubMedGoogle Scholar
  12. 12.
    Gsponer, J., & Caflisch, A. (2002). Molecular dynamics simulations of protein folding from the transition state. Proceedings of the National Academy of Sciences of the United States of America, 99, 6719–6724.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Pande, V. S., & Rokhsar, D. S. (1999). Molecular dynamics simulations of unfolding and refolding of a β-hairpin fragment of protein G. Proceedings of the National Academy of Sciences of the United States of America, 96, 9062–9067.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lindert, S., Bucher, D., Eastman, P., Pande, V., & Mccammon, J. A. (2013). Accelerated molecular dynamics simulations with the AMOEBA polarizable force field on graphics processing units. Journal of Chemical Theory and Computation, 9, 4684–4691.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Miao, Y., Feixas, F., Eun, C,. & McCammon, J. (2015). Accelerated molecular dynamics simulations of protein folding. Journal of Computational Chemistry, 36, 1536–1549.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Grant, B. J., Gorfe, A. A., & McCammon, J. A. (2009). Ras conformational switching: Simulating nucleotide- dependent conformational transitions with accelerated molecular dynamics. PLoS Computational Biology, 5, 1–10.CrossRefGoogle Scholar
  17. 17.
    Wang, F., Yang, W., Shi, Y., and Le, G. (2014) 3D-QSAR, molecular docking and molecular dynamics studies of a series of RORγt inhibitors. Journal of Biomolecular Structure & Dynamics, 33, 1–20.Google Scholar
  18. 18.
    Wang, J., Zou, J.X., Xue, X., Cai, D., Zhang, Y., Duan, Z., Xiang, Q., Yang, J.C., Louie, M.C., Borowsky, A.D., Gao, A.C., Evans, C.P., Lam, K.S., Xu, J., Kung, H.-J., Evans, R.M., Xu, Y., and Chen, H.-W. (2016) ROR-γ drives androgen receptor expression and represents a therapeutic target in castration-resistant prostate cancer. Nature Medicine, 22, 1–13.Google Scholar
  19. 19.
    Jin, L., Martynowski, D., Zheng, S., Wada, T., Xie, W., and Li, Y. (2015) Structural basis for hydroxycholesterols as Natural, ligands of orphan nuclear receptor RORgamma. Molecular Endocrinology, 24, 923–929.Google Scholar
  20. 20.
    Fujita-sato, S., Ito, S., Isobe, T., Ohyama, T., Wakabayashi, K., Morishita, K., Ando, O., and Isono, F. (2011). Structural basis of digoxin that antagonizes ROR gamma t receptor activity and suppresses Th17 cell differentiation and interleukin (IL) -17 production. Journal of Biological Chemistry, 286, 31409–31417.Google Scholar
  21. 21.
    Klepeis, J. L., Lindorff-Larsen, K., Dror, R. O., & Shaw, D. E. (2009). Long-timescale molecular dynamics simulations of protein structure and function. Current Opinion in Structural Biology, 19, 120–127.CrossRefPubMedGoogle Scholar
  22. 22.
    Wang, Y., Harrison, C., Schulten, K., & McCammon, J. A. (2011). Implementation of accelerated molecular dynamics in NAMD. Computer Science Discovery, 4, 130–134.CrossRefGoogle Scholar
  23. 23.
    Lindorff-Larsen, K., Piana, S., Dror, R. O., & Shaw, D. E. (2011). How fast-folding proteins fold. Science, 334, 517–520.CrossRefGoogle Scholar
  24. 24.
    Garcia, A. (2008). Molecular dynamics simulations of protein folding. Methods in Molecular Biology, 413, 315–330.PubMedGoogle Scholar
  25. 25.
    Durrant, J. D., & McCammon, J. A. (2011). Molecular dynamics simulations and drug discovery. BMC Biology, 9, 71.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. (2004). UCSF Chimera–a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25, 1605–1612.CrossRefPubMedGoogle Scholar
  27. 27.
    Irwin, J. J., & Shoichet, B. K. (2005). ZINC - A free database of commercially available compounds for virtual screening. Journal of Chemical Information and Modeling, 45, 177–182.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., & Olson, A. J. (1998). Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry, 19, 1639–1662.CrossRefGoogle Scholar
  29. 29.
    Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30, 2785–2791.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Anandakrishnan, R., Aguliar, B., & Onufriev, A. (2012). H++ 3.0: Automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations. Nucleic Acids Research, 40, 537–541.CrossRefGoogle Scholar
  31. 31.
    Karubiu, W., Bhakat, S., & Soliman, M. E. S. (2014). Compensatory role of double mutation N348I/M184V on nevirapine binding landscape: Insight from molecular dynamics simulation. The Protein Journal, 33, 432–446.CrossRefPubMedGoogle Scholar
  32. 32.
    Roe, D. R., & Cheatham, T. E. (2013). PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9, 3084–3095.CrossRefPubMedGoogle Scholar
  33. 33.
    Hamelberg, D., Mongan, J., & McCammon, J. A. (2004). Accelerated molecular dynamics: A promising and efficient simulation method for biomolecules. The Journal of Chemical Physics, 120, 11919–11929.CrossRefPubMedGoogle Scholar
  34. 34.
    Miao, Y., Sinko, W., Pierce, L., Bucher, D., Walker, R. C., & Mccammon, J. A. (2014). Improved reweighting of accelerated molecular dynamics simulations for free energy calculation. Journal of Chemical Theory and Computation, 10, 2677–2689.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Wang, Y., Markwick, P. R. L., De Oliveira, C. A. F., & McCammon, J. A. (2011). Enhanced lipid diffusion and mixing in accelerated molecular dynamics. Journal of Chemical Theory and Computation, 7, 3199–3207.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Salomon, B.R., Pierce, L., and Walker, R. (2013) (Note: These tutorials are meant to provide illustrative examples of how to use the AMBER software suite to carry out simulations that can be run on a simple workstation in a reasonable period of time. They do not necessarily provide the optimal choice of 120.Google Scholar
  37. 37.
    Lindert, S., Bucher, D., Eastman, P., Pande, V., & Mccammon, J. A. (2013). Polarizable force field on graphics processing units. Journal of Chemical Theory and Computation, 9, 4684–4691.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Kappel, K., Miao, Y., & McCammon, J. A. (2015). Accelerated molecular dynamics simulations of ligand binding to a muscarinic G-protein-coupled receptor. Quarterly Reviews of Biophysics, 48, 479–487.CrossRefPubMedGoogle Scholar
  39. 39.
    Kling, R.C., Tschammer, N., Lanig, H., Clark, T., and Gmeiner, P. (2014). Active-state model of a dopamine D 2 receptor - galphai complex stabilized by aripiprazole-type partial agonists, 9, 1–10.Google Scholar
  40. 40.
    Sittel, F., Jain, A., and Stock, G. (2014) Principal component analysis of molecular dynamics: On the use of cartesian vs. internal coordinates. The Journal of Chemical Physics, 141, 1–10.Google Scholar
  41. 41.
    Wolf, A., & Kirschner, K. N. (2013). Principal component and clustering analysis on molecular dynamics data of the ribosomal L11·23S subdomain. Journal of Molecular Modeling, 19, 539–549.CrossRefPubMedGoogle Scholar
  42. 42.
    Seifert, E. (2014). OriginPro 9.1: Scientific data analysis and graphing software-software review. Journal of Chemical Information and Modeling, 54, 1552.CrossRefPubMedGoogle Scholar
  43. 43.
    Massova, I., & Kollman, P. A. (2000). Combined molecular mechanical and continuum solvent approach (MM-PBSA/GBSA) to predict ligand binding. Perspectives Drug Discovery and Design., 18, 113–135.CrossRefGoogle Scholar
  44. 44.
    Onufriev, A., Bashford, D., & Case, D. A. (2000). Modification of the generalized born model suitable for macromolecules. The Journal of Physical Chemistry. B, 104, 3712–3720.CrossRefGoogle Scholar
  45. 45.
    Tsui, V., & Case, D. A. (2000). Theory and applications of the generalized born solvation model in macromolecular simulations. Biopolymers, 56, 275–291.CrossRefPubMedGoogle Scholar
  46. 46.
    Kollman, P. A., Massova, I., Reyes, C., Kuhn, B., Huo, S., Chong, L., Lee, M., Lee, T., Duan, Y., Wang, W., Donini, O., Cieplak, P., Srinivasan, J., Case, D. A., & Cheatham, T. E. (2000). Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Accounts of Chemical Research, 33, 889–897.CrossRefPubMedGoogle Scholar
  47. 47.
    Kurylowicz, M., Yu, C. H., & Pomès, R. (2010). Systematic study of anharmonic features in a principal component analysis of gramicidin A. Biophysical Journal, 98, 386–395.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    McCammon, J.A. (1984). Protein Dynamics.Google Scholar
  49. 49.
    Yang, Y., Liu, H., & Yao, X. (2012). Understanding the molecular basis of MK2–p38α signaling complex assembly: Insights into protein–protein interaction by molecular dynamics and free energy studies. Molecular BioSystems, 8, 2106.CrossRefPubMedGoogle Scholar
  50. 50.
    Huang, H. J., Yu, H. W., Chen, C. Y., Hsu, C. H., Chen, H. Y., Lee, K. J., Tsai, F., & Chen, C.Y. (2010). Current developments of computer-aided drug design. Journal of the Taiwan Institute of Chemical Engineers, 41, 623–635.CrossRefGoogle Scholar
  51. 51.
    Kasahara, K., Fukuda, I., & Nakamura, H. (2014) A novel approach of dynamic cross correlation analysis on molecular dynamics simulations and its application to Ets1 Dimer–DNA complex. FASEB J, 9, 1–13.Google Scholar
  52. 52.
    Arnold, G. E., & Ornstein, R. L. (1997). Molecular dynamics study of time-correlated protein domain motions and molecular flexibility: Cytochrome P450BM-3. Biophysical Journal, 73, 1147–1159.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Sanner, M.F., and Jolla, L. Python: a programming language for software integration and development.Google Scholar
  54. 54.
    Huey, R., Morris, G. M., Olson, A. J., & Goodsell, D. S. (2007). Software news and update a semiempirical free energy force field with charge-based desolvation. Journal of Computational Chemistry, 28, 1145–1152.CrossRefPubMedGoogle Scholar
  55. 55.
    Wallace, A. C., Laskowski, R. A., & Thornton, J. M. (1996). LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Engineering, 8, 127–134.CrossRefGoogle Scholar
  56. 56.
    Chang, C. A., Chen, W., & Gilson, M. K. (2007). Ligand configurational entropy and protein binding. PNAS, 104, 1534–1539.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Genheden, S., and Ryde, U. (2016). Expert opinion on drug discovery the MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities the MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10, 449–461.Google Scholar
  58. 58.
    Desheng, L., Jian, G., Yuanhua, C., Wei, C., Huai, Z., & Mingjuan, J. (2011). Bioorganic & Medicinal Chemistry Letters Molecular dynamics simulations and MM/GBSA methods to investigate binding mechanisms of aminomethylpyrimidine inhibitors with DPP-IV. Bioorganic & Medicinal Chemistry Letters, 21, 6630–6635.CrossRefGoogle Scholar
  59. 59.
    Srivastava, M., Singh, H., & Naik, P. K. (2010). Molecular modeling evaluation of the antimalarial activity of artemisinin analogues: Molecular docking and rescoring using prime/MM-GBSA approach. Curruent Research Journal of Biological Sciences, 2, 83–102.Google Scholar
  60. 60.
    Honarparvar, B., Govender, T., Maguire, G. E. M., Soliman, M. E. S., & Kruger, H. G. (2014). Integrated approach to structure-based enzymatic drug design: Molecular modeling, spectroscopy, and experimental bioactivity. Chemical Reviews, 114, 493–537.CrossRefPubMedGoogle Scholar
  61. 61.
    Bashford, D., & Case, D. A. (2000). Generalized born models of macromolecular solvation effects. Annual Review of Physical Chemistry, 51, 129–152.CrossRefPubMedGoogle Scholar
  62. 62.
    Jayaram, B., Sprous, D., & Beveridge, D. L. (1998). Solvation free energy of biomacromolecules: Parameters for a modified generalized born model consistent with the AMBER force field. The Journal of Physical Chemistry. B, 102, 9571–9576.CrossRefGoogle Scholar
  63. 63.
    Ylilauri, M., & Pentikäinen, O. T. (2013). MMGBSA as a tool to understand the binding affinities of filamin-peptide interactions. Journal of Chemical Information and Modeling, 53, 2626–2633.CrossRefPubMedGoogle Scholar
  64. 64.
    Gohlke, H., Kiel, C., & Case, D. A. (2003). Insights into Protein – Protein binding by binding free energy calculation and free energy decomposition for the Ras – Raf and Ras – RalGDS complexes. Journal of Molecular Biology, 330, 891–913.CrossRefPubMedGoogle Scholar
  65. 65.
    Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeerschd, T., Zurek, E., & Hutchison, G. R. (2012). Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4, 1–17.CrossRefGoogle Scholar
  66. 66.
    Huang, Y., & Paul, D. R. (2007). Effect of molecularweight and temperature on physical aging of ThinGlassy Poly(2,6-dimethyl-1,4-phenylene oxide) films. Journal of Polymer Sciience Part B: Polymer Physics, 45, 1390–1398.CrossRefGoogle Scholar
  67. 67.
    Pan, L., and Patterson, J.C. (2013). Molecular dynamics study of Zn(Aβ) and Zn(Aβ)2. PLoS One, 8, 1–8.Google Scholar
  68. 68.
    Filimonov, D.A., Lagunin, A.A., Gloriozova, T.A., Rudik, A.V, Druzhilovskii, D.S., Pogodin, P.V, and Poroikov, V.V. (2014). Prediction of the biological activity spectra of organic compounds uing the PASSonline website resource. Chemistry of Heterocyclic Compounds, 50, 444–457.Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Molecular Modeling and Drug Design Research Group, School of Health SciencesUniversity of KwaZulu-NatalWestville CampusSouth Africa

Personalised recommendations