Cell Biochemistry and Biophysics

, Volume 74, Issue 3, pp 435–447 | Cite as

Anti- and Pro-apoptotic Bcl2 Proteins Distribution and Metabolic Profile in Human Coronary Aorta Endothelial Cells Before and After HypPDT

  • Mária Maslaňáková
  • Lucia Balogová
  • Pavol Miškovský
  • Ružena Tkáčová
  • Katarína ŠtroffekováEmail author
Original Paper


Understanding apoptosis regulatory mechanisms in endothelial cells (ECs) has great importance for the development of novel therapy strategies for cancer and cardiovascular pathologies. An oxidative stress with the generation of reactive oxygen species (ROS) is a common mechanism causing ECs’ dysfunction and apoptosis. The generation of ROS can be triggered by various stimuli including photodynamic therapy (PDT). In most PDT treatments, photosensitizer (PS) is administered systemically, and thus, possibility of high exposure to PS in the ECs remains high. PS accumulation in ECs may be clinically relevant even without PDT, if PS molecules affect the pro-apoptotic cascade without illumination. In the present work, we focused on Hypericin (Hyp) and HypPDT effects on the cell viability, oxidative stress, and the distribution of Bcl2 family members in human coronary artery endothelial (HCAEC) cells. Our findings show that the presence of Hyp itself has an effect on cell viability, oxidative stress, and the distribution of Bcl2 family members, without affecting the mitochondria function. In contrast, HypPDT resulted in mitochondria dysfunction, further increase of oxidative stress and effect on the distribution of Bcl2 family members, and in primarily necrotic type of death in HCAEC cells.


Apoptosis Oxidative stress Hypericin Photodynamic therapy Bcl2 family of proteins 



Supported by the EU 7FP grant PIRG06-GA-2009-256580 and by EU Structural Fund ITMS26110230013; by the Slovak Grant Agency VEGA -1-0111-12 and VEGA 1/0425/15; and by the Slovak Research and Development Agency APVV-0134-11.


  1. 1.
    Berlanda, J., Kiesslich, T., Engelhardt, V., Krammer, B., & Plaetzer, K. (2010). Comparative in vitro study on the characteristics of different photosensitizers employed in PDT. Journal of Photochemistry and Photobiology B-Biology, 100, 173–180.CrossRefGoogle Scholar
  2. 2.
    Bechet, D., Mordon, S. R., Guillemin, F., & Barberi-Heyob, M. A. (2014). Photodynamic therapy of malignant brain tumours: A complementary approach to conventional therapies. Cancer Treatment Reviews, 40, 229–241.CrossRefPubMedGoogle Scholar
  3. 3.
    Kepp, O., Senovilla, L., Vitale, I., Vacchelli, E., Adjemian, S., Agostinis, P., et al. (2014). Consensus guidelines for the detection of immunogenic cell death. Oncoimmunology, 3, e955691.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Miskovsky, P. (2002). Hypericin-a new antiviral and antitumor photosensitizer: Mechanism of action and interaction with biological macromolecules. Current Drug Targets, 3, 55–84.CrossRefPubMedGoogle Scholar
  5. 5.
    Gyenge, E. B., Luscher, D., Forny, P., Antoniol, M., Geisberger, G., Walt, H., et al. (2013). Photodynamic mechanisms induced by a combination of hypericin and a chlorin based-photosensitizer in head and neck squamous cell carcinoma cells. Photochemistry and Photobiology, 89, 150–162.CrossRefPubMedGoogle Scholar
  6. 6.
    Kascakova, S., Nadova, Z., Mateasik, A., Mikes, J., Huntosova, V., Refregiers, M., et al. (2008). High level of low-density lipoprotein receptors enhance hypericin uptake by U-87 MG cells in the presence of LDL. Photochemistry and Photobiology, 84, 120–127.PubMedGoogle Scholar
  7. 7.
    Kiesslich, T., Krammer, B., & Plaetzer, K. (2006). Cellular mechanisms and prospective applications of hypericin in photodynamic therapy. Current Medicinal Chemistry, 13, 2189–2204.CrossRefPubMedGoogle Scholar
  8. 8.
    Agostinis, P., Vantieghem, A., Merlevede, W., & de Witte, P. A. M. (2002). Hypericin in cancer treatment: more light on the way. International Journal of Biochemistry & Cell Biology, 34, 221–241.CrossRefGoogle Scholar
  9. 9.
    Theodossiou, T. A., Hothersall, J. S., De Witte, P. A., Pantos, A., & Agostinis, P. (2009). The multifaceted photocytotoxic profile of hypericin. Molecular Pharmaceutics, 6, 1775–1789.CrossRefPubMedGoogle Scholar
  10. 10.
    Vantieghem, A., Xu, Y., Assefa, Z., Piette, J., Vandenheede, J. R., Merlevede, W., et al. (2002). Phosphorylation of Bcl-2 in G(2)/M phase-arrested cells following photodynamic therapy with hypericin involves a CDK1-mediated signal and delays the onset of apoptosis. Journal of Biological Chemistry, 277, 37718–37731.CrossRefPubMedGoogle Scholar
  11. 11.
    Buytaert, E., Callewaert, G., Hendrickx, N., Scorrano, L., Hartmann, D., Missiaen, L., et al. (2006). Role of endoplasmic reticulum depletion and multidomain proapoptotic BAX and BAK proteins in shaping cell death after hypericin-mediated photodynamic therapy. Faseb Journal, 20, 756.PubMedGoogle Scholar
  12. 12.
    Krammer, B., & Verwanger, T. (2012). Molecular response to hypericin-induced photodamage. Current Medicinal Chemistry, 19, 793–798.CrossRefPubMedGoogle Scholar
  13. 13.
    Kocanova, S., Buytaert, E., Matroule, J. Y., Piette, J., Golab, J., de Witte, P., & Agostinis, P. (2007). Induction of heme-oxygenase 1 requires the p38(MAPK) and PI3 K pathways and suppresses apoptotic cell death following hypericin-mediated photodynamic therapy. Apoptosis, 12, 731–741.CrossRefPubMedGoogle Scholar
  14. 14.
    Galanou, M. C., Theodossiou, T. A., Tsiourvas, D., Sideratou, Z., & Paleos, C. M. (2008). Interactive transport, subcellular relocation and enhanced phototoxicity of hypericin encapsulated in guanidinylated liposomes via molecular recognition. Photochemistry and Photobiology, 84, 1073–1083.PubMedGoogle Scholar
  15. 15.
    Reeves, K. J., Reed, M. W. R., & Brown, N. J. (2009). Is nitric oxide important in photodynamic therapy? Journal of Photochemistry and Photobiology B-Biology, 95, 141–147.CrossRefGoogle Scholar
  16. 16.
    Assefa, Z., Vantieghem, A., Declercq, W., Vandenabeele, P., Vandenheede, J. R., Merlevede, W., et al. (1999). The activation of the c-Jun N-terminal kinase and p38 mitogen-activated protein kinase signaling pathways protects HeLa cells from apoptosis following photodynamic therapy with hypericin. Journal of Biological Chemistry, 274, 8788–8796.CrossRefPubMedGoogle Scholar
  17. 17.
    Itoh, K., Ishii, T., Wakabayashi, N., & Yamamoto, M. (1999). Regulatory mechanisms of cellular response to oxidative stress. Free Radical Research, 31, 319–324.CrossRefPubMedGoogle Scholar
  18. 18.
    Volanti, C., Hendrickx, N., Van Lint, J., Matroule, J. Y., Agostinis, P., & Piette, J. (2005). Distinct transduction mechanisms of cyclooxygenase 2 gene activation in tumour cells after photodynamic therapy. Oncogene, 24, 2981–2991.CrossRefPubMedGoogle Scholar
  19. 19.
    Huntosova, V., Nadova, Z., Dzurova, L., Jakusova, V., Sureau, F., & Miskovsky, P. (2012). Cell death response of U87 glioma cells on hypericin photoactivation is mediated by dynamics of hypericin subcellular distribution and its aggregation in cellular organelles. Photochemical & Photobiological Sciences, 11, 1428–1436.CrossRefGoogle Scholar
  20. 20.
    English, D. S., Doyle, R. T., Petrich, J. W., & Haydon, P. G. (1999). Subcellular distributions and excited-state processes of hypericin in neurons. Photochemistry and Photobiology, 69, 301–305.CrossRefPubMedGoogle Scholar
  21. 21.
    Uzdensky, A. B., Ma, L. W., Iani, V., Hjortland, G. O., Steen, H. B., & Moan, J. (2001). Intracellular localisation of hypericin in human glioblastoma and carcinoma cell lines. Lasers in Medical Science, 16, 276–283.CrossRefPubMedGoogle Scholar
  22. 22.
    Siboni, G., Weitman, H., Freeman, D., Mazur, Y., Malik, Z., & Ehrenberg, B. (2002). The correlation between hydrophilicity of hypericins and helianthrone: internalization mechanisms, subcellular distribution and photodynamic action in colon carcinoma cells. Photochemical & Photobiological Sciences, 1, 483–491.CrossRefGoogle Scholar
  23. 23.
    Theodossiou, T., Spiro, M. D., Jacobson, J., Hothersall, J. S., & MacRobert, A. J. (2004). Evidence for intracellular aggregation of hypericin and the impact on its photocytotoxicity in PAM 212 murine keratinocytes. Photochemistry and Photobiology, 80, 438–443.CrossRefPubMedGoogle Scholar
  24. 24.
    Ali, S. M., & Olivo, M. (2002). Bio-distribution and subcellular localization of Hypericin and its role in PDT induced apoptosis in cancer cells. International Journal of Oncology, 21, 531–540.PubMedGoogle Scholar
  25. 25.
    Hsu, Y. T., Wolter, K. G., & Youle, R. J. (1997). Cytosol-to-membrane redistribution of Bax and Bcl-X-L during apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 94, 3668–3672.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Korsmeyer, S. J. (1999). BCL-2 gene family and the regulation of programmed cell death. Cancer Research, 59, 1693s–1700s.PubMedGoogle Scholar
  27. 27.
    Lindsten, T., Ross, A. J., King, A., Zong, W. X., Rathmell, J. C., Shiels, H. A., et al. (2000). The combined functions of proapoptotic Bcl-2 family members Bak and Bax are essential for normal development of multiple tissues. Molecular Cell, 6, 1389–1399.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Annis, M. G., Zamzami, N., Zhu, W. J., Penn, L. Z., Kroemer, G., Leber, B., & Andrews, D. W. (2001). Endoplasmic reticulum localized Bcl-2 prevents apoptosis when redistribution of cytochrome c is a late event. Oncogene, 20, 1939–1952.CrossRefPubMedGoogle Scholar
  29. 29.
    Nutt, L. K., Pataer, A., Pahler, J., Fang, B. L., Roth, J., McConkey, D. J., & Swisher, S. G. (2002). Bax and Bak promote apoptosis by modulating endoplasmic reticular and mitochondrial Ca2+ stores. Journal of Biological Chemistry, 277, 9219–9225.CrossRefPubMedGoogle Scholar
  30. 30.
    Lindsay, J., Esposti, M. D., & Gilmore, A. P. (2011). Bcl-2 proteins and mitochondria-specificity in membrane targeting for death. Biochimica Et Biophysica Acta-Molecular Cell Research, 1813, 532–539.CrossRefGoogle Scholar
  31. 31.
    Bonneau, B., Prudent, J., Popgeorgiev, N., & Gillet, G. (2013). Non-apoptotic roles of Bcl-2 family: The calcium connection. Biochimica Et Biophysica Acta-Molecular Cell Research, 1833, 1755–1765.CrossRefGoogle Scholar
  32. 32.
    Ruvolo, P. P., Deng, X. M., Carr, B. H., & May, W. S. (1998). A functional role for mitochondrial protein kinase C alpha in Bcl2 phosphorylation and suppression of apoptosis. Journal of Biological Chemistry, 273, 25436–25442.CrossRefPubMedGoogle Scholar
  33. 33.
    Kurinna, S., Konopleva, M., Palla, S. L., Chen, W., Kornblau, S., Contractor, R., et al. (2006). Bcl2 phosphorylation and active PKC alpha are associated with poor survival in AML. Leukemia, 20, 1316–1319.CrossRefPubMedGoogle Scholar
  34. 34.
    Chowdhury, P. K., Ashby, K. D., Datta, A., & Petrich, J. W. (2000). Effect of pH on the fluorescence and absorption spectra of hypericin in reverse micelles. Photochemistry and Photobiology, 72, 612–618.CrossRefPubMedGoogle Scholar
  35. 35.
    Wu, M., Neilson, A., Swift, A. L., Moran, R., Tamagnine, J., Parslow, D., et al. (2007). Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. American Journal of Physiology-Cell Physiology, 292, C125–C136.CrossRefPubMedGoogle Scholar
  36. 36.
    Brand, M. D., & Nicholls, D. G. (2011). Assessing mitochondrial dysfunction in cells. Biochemical Journal, 435, 297–312.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Dranka, B. P., Benavides, G. A., Diers, A. R., Giordano, S., Zelickson, B. R., Reily, C., et al. (2011). Assessing bioenergetic function in response to oxidative stress by metabolic profiling. Free Radical Biology and Medicine, 51, 1621–1635.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Bolte, S., & Cordelieres, F. P. (2006). A guided tour into subcellular colocalization analysis in light microscopy. Journal of Microscopy-Oxford, 224, 213–232.CrossRefGoogle Scholar
  39. 39.
    Stupakova, V., Varinska, L., Mirossay, A., Sarissky, M., Mojzis, J., Dankovcik, R., et al. (2009). Photodynamic effect of hypericin in primary cultures of human umbilical endothelial cells and glioma cell lines. Phytotherapy Research, 23, 827–832.CrossRefPubMedGoogle Scholar
  40. 40.
    Martinez-Poveda, B., Quesada, A. R., & Medina, M. A. (2005). Hypericin in the dark inhibits key steps of angiogenesis in vitro. European Journal of Pharmacology, 516, 97–103.CrossRefPubMedGoogle Scholar
  41. 41.
    Sureau, F., Miskovsky, P., Chinsky, L., & Turpin, P. Y. (1996). Hypericin-induced cell photosensitization involves an intracellular pH decrease. Journal of the American Chemical Society, 118, 9484–9487.CrossRefGoogle Scholar
  42. 42.
    Haimovitz-Friedman, A., Balaban, N., McLoughlin, M., Ehleiter, D., Michaeli, J., Vlodavsky, I., & Fuks, Z. (1994). Protein kinase C mediates basic fibroblast growth factor protection of endothelial cells against radiation-induced apoptosis. Cancer Research, 54, 2591–2597.PubMedGoogle Scholar
  43. 43.
    Gill, M. B., & Perez-Polo, J. R. (2009). Bax shuttling after rotenone treatment of neuronal primary cultures: Effects on cell death phenotypes. Journal of Neuroscience Research, 87, 2047–2065.CrossRefPubMedGoogle Scholar
  44. 44.
    Infante, S. K., Oberhauser, A. F., & Perez-Polo, J. R. (2013). Bax phosphorylation association with nucleus and oligomerization after neonatal Hypoxia-ischemia. Journal of Neuroscience Research, 91, 1152–1164.CrossRefPubMedGoogle Scholar
  45. 45.
    Lindenboim, L., Ferrando-May, E., Borner, C., & Stein, R. (2013). Non-canonical function of Bax in stress-induced nuclear protein redistribution. Cellular and Molecular Life Sciences, 70, 3013–3027.CrossRefPubMedGoogle Scholar
  46. 46.
    Kutuk, O., & Letai, A. (2008). Alteration of the mitochondrial apoptotic pathway is key to acquired paclitaxel resistance and can be reversed by ABT-737. Cancer Research, 68, 7985–7994.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Vogler, M., Hamali, H. A., Sun, X. M., Bampton, E. T. W., Dinsdale, D., Snowden, R. T., et al. (2011). BCL2/BCL-X-L inhibition induces apoptosis, disrupts cellular calcium homeostasis, and prevents platelet activation. Blood, 117, 7145–7154.CrossRefPubMedGoogle Scholar
  48. 48.
    Yoshioka, J., Chutkow, W. A., Lee, S., Kim, J. B., Yan, J., Tian, R., et al. (2012). Deletion of thioredoxin-interacting protein in mice impairs mitochondrial function but protects the myocardium from ischemia-reperfusion injury. Journal of Clinical Investigation, 122, 267–279.CrossRefPubMedGoogle Scholar
  49. 49.
    Herrmann, A. G., Deighton, R. F., Le Bihan, T., McCulloch, M. C., Searcy, J. L., Kerr, L. E., & McCulloch, J. (2013). Adaptive changes in the neuronal proteome: mitochondrial energy production, endoplasmic reticulum stress, and ribosomal dysfunction in the cellular response to metabolic stress. Journal of Cerebral Blood Flow and Metabolism, 33, 673–683.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Ho, J. H., de Moura, M. B., Lin, Y., Vincent, G., Thorne, S., Duncan, L. M., et al. (2012). Importance of glycolysis and oxidative phosphorylation in advanced melanoma. Molecular Cancer, 11, 1.CrossRefGoogle Scholar
  51. 51.
    Kramer, P. A., Ravi, S., Chacko, B., Johnson, M. S., & Darley-Usmar, V. M. (2014). A review of the mitochondrial and glycolytic metabolism in human platelets and leukocytes: Implications for their use as bioenergetic biomarkers. Redox Biology, 2, 206–210.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Mária Maslaňáková
    • 1
  • Lucia Balogová
    • 1
  • Pavol Miškovský
    • 1
    • 2
  • Ružena Tkáčová
    • 3
  • Katarína Štroffeková
    • 1
    Email author
  1. 1.Department of Biophysics, Faculty of Natural SciencesPJ Safarik UniversityKosiceSlovakia
  2. 2.Center of Interdisciplinary Biosciences, Faculty of Natural SciencesPJ Safarik UniversityKosiceSlovakia
  3. 3.Department of Respiratory Medicine, Faculty of MedicineP.J. Safarik UniversityKosiceSlovakia

Personalised recommendations