Cell Biochemistry and Biophysics

, Volume 75, Issue 2, pp 151–157 | Cite as

High-Frequency Electron Paramagnetic Resonance Spectroscopy of Nitroxide-Functionalized Nanodiamonds in Aqueous Solution

Original Paper

Abstract

Nanodiamond (ND) is an attractive class of nanomaterial for fluorescent labeling, magnetic sensing of biological molecules, and targeted drug delivery. Many of those applications require tethering of target biological molecules on the ND surface. Even though many approaches have been developed to attach macromolecules to the ND surface, it remains challenging to characterize dynamics of tethered molecule. Here, we show high-frequency electron paramagnetic resonance (HF EPR) spectroscopy of nitroxide-functionalized NDs. Nitroxide radical is a commonly used spin label to investigate dynamics of biological molecules. In the investigation, we developed a sample holder to overcome water absorption of HF microwave. Then, we demonstrated HF EPR spectroscopy of nitroxide-functionalized NDs in aqueous solution and showed clear spectral distinction of ND and nitroxide EPR signals. Moreover, through EPR spectral analysis, we investigate dynamics of nitroxide radicals on the ND surface. The demonstration sheds light on the use of HF EPR spectroscopy to investigate biological molecule-functionalized nanoparticles.

Keywords

Electron paramagnetic resonance High frequency Aqueous sample Nanodiamond Nitroxide Click chemistry 

Notes

Acknowledgments

This work was supported by the Searle Scholars Program, the USC Anton B. Burg Foundation and the National Science Foundation (DMR-1508661) (S.T.).

References

  1. 1.
    Balasubramanian, G., Chan, I. Y., Kolesov, R., Al-Hmoud, M., Tisler, J., Shin, C., et al. (2008). Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature, 455, 648–651.CrossRefPubMedGoogle Scholar
  2. 2.
    Maze, J. R., Stanwix, P. L., Hodges, J. S., Hong, S., Taylor, J. M., Cappellaro, P., et al. (2008). Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature, 455, 644–647.CrossRefPubMedGoogle Scholar
  3. 3.
    Degen, C. L. (2008). Scanning magnetic field microscope with a diamond single-spin sensor. Applied Physics Letters, 2008(92), 243111.CrossRefGoogle Scholar
  4. 4.
    Taylor, J. M., Cappellaro, P., Childress, L., Jiang, L., Budker, D., Hemmer, P. R., et al. (2008). High-sensitivity diamond magnetometer with nanoscale resolution. Nature Physics, 4, 810–816.CrossRefGoogle Scholar
  5. 5.
    Chang, B.-M., Lin, H.-H., Su, L.-J., Lin, W.-D., Lin, R.-J., Tzeng, Y.-K., et al. (2013). Highly fluorescent nanodiamonds protein-functionalized for cell labeling and targeting. Advanced Functional Materials, 23, 5737–5745.CrossRefGoogle Scholar
  6. 6.
    Fu, C.-C., Lee, H.-Y., Chen, K., Lim, T.-S., Wu, H.-Y., Lin, P.-K., et al. (2007). Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proceedings of National Academy of Sciences, 104, 727–732.CrossRefGoogle Scholar
  7. 7.
    Holt, K. B. (2007). Diamond at the nanoscale: applications of diamond nanoparticles from cellular biomarkers to quantum computing. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2007(365), 2845–2861.CrossRefGoogle Scholar
  8. 8.
    Huang, L., & Chang, H.-C. (2004). Adsorption and immobilization of cytochrome c on nanodiamonds. Langmuir, 20, 5879–5884.CrossRefPubMedGoogle Scholar
  9. 9.
    Krueger, A., Liang, Y., Jarre, G., & Stegk, J. (2006). Surface functionalisation of detonation diamond suitable for biological applications. Journal of Materials Chemistry, 16, 2322.CrossRefGoogle Scholar
  10. 10.
    McGuinness, L. P., Yan, Y., Stacey, A., Simpson, D. A., Hall, L. T., Maclaurin, D., et al. (2011). Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells. Nature Nanotechnology, 6, 358–363.CrossRefPubMedGoogle Scholar
  11. 11.
    Wenga, M.-F., Changa, B.-J., Chianga, S.-Y., & Wang, N.-S. (2012). Cellular uptake and phototoxicity of surface-modified fluorescent nanodiamonds. Diamond and Related Materials, 22, 96–104.CrossRefGoogle Scholar
  12. 12.
    Zhao, L., Nakae, Y., Qin, H., Ito, T., Kimura, T., Kojima, H., & Chan, L. (2014). Polyglycerol-functionalized nanodiamond as a platform for gene delivery:derivatization, characterization, and hybridization with DNA. Journal of Organic Chemistry, 10, 707–713.Google Scholar
  13. 13.
    Kaur, R., & Badea, I. (2013). Nanodiamonds as novel nanomaterials for biomedical applications: drug delivery and imaging systems. International Journal of Nanomedicine, 8, 203–220.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Ermakova, A., Pramanik, G., Cai, J.-M., Algara-Siller, G., Kaiser, U., Weil, T., et al. (2013). Detection of a few metallo-protein molecules using color centers in nanodiamonds. Nano Letters, 13, 3305–3309.CrossRefPubMedGoogle Scholar
  15. 15.
    Huang, T., Tzeng, Y., Liu, Y. K., Chen, Y. C., Walker, K. R., & Guntupalli, R. (2004). Liu C (2004) Immobilization of antibodies and bacterial binding on nanodiamond and carbon nanotubes for biosensor applications. Diamond and Related Materials, 13, 1098.CrossRefGoogle Scholar
  16. 16.
    Liu, Y. L., & Sun, K. W. (2010). Protein functionalized nanodiamond arrays. Nanoscale Research Letters, 5, 1045–1050.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Hubbell, W. L., & Altenbach, C. (1994). Investigation of structure and dynamics in membrane proteins using site-directed spin labeling. Current Opinion in Structural Biology, 4, 566–573.CrossRefGoogle Scholar
  18. 18.
    Kao, S. C., & Bobst, A. M. (2001). Local base dynamics and local structural features in RNA and DNA duplexes. Biochemistry, 24, 5465–5469.CrossRefGoogle Scholar
  19. 19.
    Hubbell, W. L., Cafiso, D. S., & Altenbach, C. (2000). Identifying conformational changes with site-directed spin labeling. Natural Structural Biology, 7, 735–739.CrossRefGoogle Scholar
  20. 20.
    Edwards, T. E., Okonogi, T. M., Robinson, B. H., & Sigurdsson, S. T. (2001). Site-specific incorporation of nitroxide spin-labels into internal sites of the TAR RNA. Structure-dependent dynamics of RNA by EPR spectroscopy. Journal of the American Chemical Society, 123, 1527–1528.CrossRefPubMedGoogle Scholar
  21. 21.
    Schiemann, O., Piton, N., Plackmeyer, J., Bode, B. E., Prisner, T. F., & Engels, J. W. (2007). Spin labeling of oligonucleotides with the nitroxide TPA and use of PELDOR, a pulse EPR method, to measure intramolecular distances. Nature protocols, 2(4), 904–923.CrossRefPubMedGoogle Scholar
  22. 22.
    Hubbell, W. L., Mchaourab, H. S., Altenbach, C., & Lietzow, M. A. (1996). Watching proteins using move using site-directed spin labeling. Structure, 4, 779–783.CrossRefPubMedGoogle Scholar
  23. 23.
    Farahbakhsh, Z. T., Hideg, K., & Hubbell, W. (1993). Photoactived conformational changes in rhodopsin: a time-reolved spin label study. Science, 262, 1416–1419.CrossRefPubMedGoogle Scholar
  24. 24.
    Steinhoff, H.-J., Mollaaghababa, R., Altenbach, C., Hideg, K., Krebs, M., & Khorana, H. G. (1994). Time-resolved detection of structure changes during the photocycle of spin-labeled bacteriorhodopsin. Science, 266, 105–107.CrossRefPubMedGoogle Scholar
  25. 25.
    Stone, K. M., Voska, J., Kinnebrew, M., Pavlova, A., Junk, M. J. N., & Han, S. (2013). Structural insight into proteorhodopsin oligomers. Biophysical Journal, 104, 472–481.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Qin, P. Z., Haworth, I. S., Cai, Q., Kusnetzow, A. K., Grant, G. P. G., Price, E. A., et al. (2007). Measuring nanometer distances in nucleic acids using a sequence-independent nitroxide probe. Nature Protocols, 2, 2354–2365.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Yamauchi, J. (2008). Molecular Magnetism. handbook of Nitroxides: applications in chemistry, biomedicine, and materials science (pp. 47–68). Weinheim: Wiley-VCH.Google Scholar
  28. 28.
    Romanova, E. E., Akiel, R., Cho, F. H., & Takahashi, S. (2013). Grafting nitroxide radicals on nanodiamond surface using click chemistry. Journal of Physical Chemistry A, 117, 11933–11939.CrossRefGoogle Scholar
  29. 29.
    Akiel R, Zhang X, Abeywardana C, Stepanov V, Peter Z Qin, Takahashi S (2016) DNA bar-coding of anodiamonds. 2016. submitted.Google Scholar
  30. 30.
    Cho, F. H., Stepanov, V., Abeywardana, C., & Takahashi, S. (2015). 230/115 GHz electron paramagnetic resonance/double electron-electron resonance spectroscopy. Methods in Enzymology, 2015, 95–118.CrossRefGoogle Scholar
  31. 31.
    Cho, F. H., Stepanov, V., & Takahashi, S. (2014). A high-frequency electron paramagnetic resonance spectrometer for multi-dimensional, -frequency and -phase pulsed measurements. Review of Scientific Instruments, 85, 42–55.CrossRefGoogle Scholar
  32. 32.
    Xu, J., Plaxco, K. W., Allen, S. J., Bjarnason, J. E., & Brown, E. R. (2007). 0.15–3.72 THz absorption of aqueous salts and saline solutions. Applied physics letters, 90(3), 031908.CrossRefGoogle Scholar
  33. 33.
    Barnes, J. P., & Freed, J. H. (1997). Aqueous sample holders for high-frequency electron spin resonance. Review of Scientific Instruments, 68, 2838–2846.CrossRefGoogle Scholar
  34. 34.
    Polnaszek, C. F., Bruno, G. V., & Freed, J. H. (1973). ESR line shapes in the slow-motional region: anisotropic liquids. The Journal of Chemical Physics, 58, 3185–3199.CrossRefGoogle Scholar
  35. 35.
    Schneider, D. J., & Freed, J. H. (1989). Spin relaxation and motional dynamics. Advances in Chemical Physics, 73, 387–528.Google Scholar
  36. 36.
    Budil, D. E., Lee, S., Saxena, S., & Freed, J. H. (1996). Nonlinear-least-squares analysis of slow-sotion EPR spectra in one and two dimensions using a modified levenberg–marquardt algorithm. Journal of Magnetic Resonance, Series A, 120, 155–189.CrossRefGoogle Scholar
  37. 37.
    Schwartz, L. J., Stillman, A. E., & JH, Freed. (1982). Analysis of electron spin echoes by spectral representation of the stochastic liouville equation. The Journal of Chemical Physics, 77, 5410–5425.CrossRefGoogle Scholar
  38. 38.
    Polimeno, A., & Freed, J. H. (1993). A many-body stochastic approach to rotational motions in liquids. Advances in Chemical Physics, 83, 89–206.Google Scholar
  39. 39.
    Zerbetto, M., Polimeno, A., & Barone, V. (2009). Simulation of electron spin resonance spectroscopy in diverse environments: an integrated approach. Computer Physics Communications, 180, 2680.CrossRefGoogle Scholar
  40. 40.
    Kimmich, R. (2012). Basic Phenomena and Definitions. handbook of Principles of soft-matter dynamics: basic theories, non-invasive methods, mesoscopic aspects (pp. 1–87). Dordrecht: Springer.CrossRefGoogle Scholar
  41. 41.
    Stoll, S., & Schweiger, A. (2006). EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. Journal of Magnetic Resonance, Series A, 178, 42–55.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Department of Physics and AstronomyUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations