Advertisement

Cell Biochemistry and Biophysics

, Volume 73, Issue 3, pp 681–686 | Cite as

Curcumin Promotes Cell Cycle Arrest and Inhibits Survival of Human Renal Cancer Cells by Negative Modulation of the PI3K/AKT Signaling Pathway

  • Hao Zhang
  • Weili Xu
  • Baolin Li
  • Kai Zhang
  • Yudong Wu
  • Haidong Xu
  • Junyong Wang
  • Jun Zhang
  • Rui Fan
  • Jinxing Wei
Original Paper

Abstract

Curcumin possesses anti-cancer effects. In the current study, we tested the effect of curcumin on cell proliferation, viability, apoptosis, cell cycle phases, and activation of the PI3K/Akt pathway in the renal cell carcinoma (RCC) cell line RCC-949. We observed that cell proliferation and viability were markedly inhibited by curcumin, while cell apoptosis was promoted. The latter effect was associated with increased expression of Bcl-2 and diminished expression of Bax (both: mRNA and protein). The cells treated with curcumin increasingly went into cell cycle arrest, which was likely mediated by diminished expression of cyclin B1, as seen in curcumin-treated cells. In addition, curcumin decreased activation of the PI3K/AKT signaling pathway. In conclusion, our results demonstrate that curcumin exerts anti-cancer effects by negative modulation of the PI3K/AKT signaling pathway and may represent a promising new drug to treat RCC.

Keywords

Human renal cell carcinoma Curcumin Cell apoptosis Cell cycle arrest AKT PI3K 

References

  1. 1.
    Kraushaar, G., & Wiebe, S. (2005). Renal cell carcinoma as a second malignant neoplasm in a patient with non-syndromic hemihypertrophy and previous Wilms tumor. Pediatric Radiology, 35, 1208–1211.CrossRefPubMedGoogle Scholar
  2. 2.
    Kuhara, H., Wakabayashi, T., Kishimoto, H., Sadoh, S., Suzuki, T., & Senda, Y. (1984). Malignant mediastinal myxoid tumor and renal cell carcinoma. Acta Patholoy Japan, 34, 881–887.Google Scholar
  3. 3.
    Ustaalioglu Oven, B. B., Bilici, A., Seker, M., Salepci, T., Keser, S., & Gumus, M. (2009). Renal cell carcinoma with pulmonary metastasis misdiagnosed as other primary malignant tumor. Journal of BUON, 14, 727–728.PubMedGoogle Scholar
  4. 4.
    Haddad, A. Q., Wood, C. G., Abel, E. J., Krabbe, L. M., Darwish, O. M., Thompson, R. H., et al. (2014). Oncologic outcomes following surgical resection of renal cell carcinoma with inferior vena caval thrombus extending above the hepatic veins: A contemporary multicenter cohort. Journal of Urology, 192, 1050–1056.CrossRefPubMedGoogle Scholar
  5. 5.
    Kim, H. L., Seligson, D., Liu, X., Janzen, N., Bui, M. H., Yu, H., et al. (2005). Using tumor markers to predict the survival of patients with metastatic renal cell carcinoma. Journal of Urology, 173, 1496–1501.CrossRefPubMedGoogle Scholar
  6. 6.
    Dornbusch, J., Zacharis, A., Meinhardt, M., Erdmann, K., Wolff, I., Froehner, M., et al. (2013). Analyses of potential predictive markers and survival data for a response to sunitinib in patients with metastatic renal cell carcinoma. PLoS ONE, 8, e76386.PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Figlin, R. A. (2013). From the guest editor: Renal cell carcinoma: The next decade of development. Cancer Journal, 2013(19), 297–298.CrossRefGoogle Scholar
  8. 8.
    White, M. C., Peipins, L. A., Watson, M., Trivers, K. F., Holman, D. M., & Rodriguez, J. L. (2013). Cancer prevention for the next generation. Journal of Adolescent Health, 52, S1–S7.PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Yue, C. H., Zheng, L. T., Guo, Q. M., & Li, K. P. (2014). Study on extracting and separating curcuminoids from Curcuma longa rhizome using ultrasound strengthen by micro emulsion. Zhong Yao Cai, 37, 880–883. (in Chinese).PubMedGoogle Scholar
  10. 10.
    Lyn, L. Y., Sze, H. W., & Rajendran, A. (2011). Crystal modifications and dissolution rate of piroxicam. Acta Pharmaceutica, 61, 391–402.CrossRefPubMedGoogle Scholar
  11. 11.
    Troselj, K. G., & Kujundzic, R. N. (2014). Curcumin in combined cancer therapy. Current Pharmaceutical Design, 2014(20), 6682–6696.CrossRefGoogle Scholar
  12. 12.
    Sharma, R. A., Gescher, A. J., & Steward, W. P. (2005). Curcumin: The story so far. European Journal of Cancer, 41, 1955–1968.CrossRefPubMedGoogle Scholar
  13. 13.
    Siddiqui, A., Cui, X., Wu, R., & Dong, W. (2006). The anti-inflammatory effect of curcumin in an experimental model of sepsis is mediated by up-regulation of peroxisome proliferator-activated receptor-gamma. Critical Care Medicine, 34, 1874–1882.CrossRefPubMedGoogle Scholar
  14. 14.
    Wang, P., & Wang, B. (2014). Increased chemopreventive effect by combining arctigenin, green tea polyphenol and curcumin in prostate and breast cancer cells. RSC Advances, 4, 35242–35250.PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Panzhinskiy, E., & Hua, Y. (2014). Novel curcumin derivative CNB-001 mitigates obesity-associated insulin resistance. Journal of Pharmacology and Experimental Therapeutics, 349, 248–257.PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Uehara, Y., Inoue, M., & Fukuda, K. (2014). Inhibition of β-catenin and STAT3 with a curcumin analog suppresses gastric carcinogenesis in vivo. Gastric Cancer, 219, 950–957.Google Scholar
  17. 17.
    Killian, P. H., Kronski, E., & Michalik, K. M. (2012). Curcumin inhibits prostate cancer metastasis in vivo by targeting the inflammatory cytokines CXCL1 and -2. Carcinogenesis, 33, 2507–2519.CrossRefPubMedGoogle Scholar
  18. 18.
    Chen, Q. Y., Zheng, Y., & Jiao, D. M. (2014). Curcumin inhibits lung cancer cell migration and invasion through Rac1-dependent signaling pathway. Journal of Nutritional Biochemistry, 25, 177–185.CrossRefPubMedGoogle Scholar
  19. 19.
    Yin, Z., & Sun, J. (2014). Curcumin induces human SKOV3 cell apoptosis via the activation of Rho-kinase. European Journal of Gynaecological Oncology, 35, 433–437.PubMedGoogle Scholar
  20. 20.
    Buss, S., & Dobra, J. (2013). Visible light is a better co-inducer of apoptosis for curcumin-treated human melanoma cells than UVA. PLoS ONE, 8, e79748.PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Son, Y. O., & Pratheeshkumar, P. (2013). Reactive oxygen species mediate Cr(VI)-induced carcinogenesis through PI3K/AKT-dependent activation of GSK-3β/β-catenin signaling. Toxicology and Applied Pharmacology, 2013(271), 239–248.CrossRefGoogle Scholar
  22. 22.
    Liu, Z. L., & Mao, J. H. (2013). Inhibition of fatty acid synthase suppresses osteosarcoma cell invasion and migration via downregulation of the PI3K/Akt signaling pathway in vitro. Molecular Medicine Reports, 2013(7), 608–612.Google Scholar
  23. 23.
    Tsukamoto, T., & Hama, S. (2013). Selenate induces epithelial-mesenchymal transition in a colorectal carcinoma cell line by AKT activation. Experimental Cell Research, 319, 1913–1921.CrossRefPubMedGoogle Scholar
  24. 24.
    Paplomata, E., & O’Regan, R. (2014). The PI3K/AKT/mTOR pathway in breast cancer: Targets, trials and biomarkers. Therapeutic Advances in Medical Oncology, 6, 154–166.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Hao Zhang
    • 1
  • Weili Xu
    • 2
  • Baolin Li
    • 3
  • Kai Zhang
    • 1
  • Yudong Wu
    • 2
  • Haidong Xu
    • 1
  • Junyong Wang
    • 1
  • Jun Zhang
    • 1
  • Rui Fan
    • 1
  • Jinxing Wei
    • 2
  1. 1.Department of Urology SurgeryThe Zhengzhou Central Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
  2. 2.Department of Urology SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
  3. 3.Department of AnesthesiologyThe Zhengzhou Central Hospital Affiliated to Zhengzhou UniversityZhengzhouChina

Personalised recommendations