Advertisement

Cell Biochemistry and Biophysics

, Volume 73, Issue 1, pp 41–44 | Cite as

GJB2 as Well as SLC26A4 Gene Mutations are Prominent Causes for Congenital Deafness

  • Yuan Fang
  • Maosheng Gu
  • Chuanxia Wang
  • Feng Suo
  • Guangming WangEmail author
  • Yujuan Xia
Original Paper

Abstract

Mutations in gap junction proteins encoding beta connexions are believed to be a major cause for congenital hearing loss. The purpose of this study was to do comparative analyses of frequencies of most prominent mutations responsible for congenital deafness. Using fluorescence PCR method, the entire coding region of GJB2 gene, GJB3 gene, and SLC26A4 was analyzed. Direct DNA sequencing was used to analyze mutations in these genes among unrelated 2,674 cases of newborns. Also, 12S rRNA mutation was also studied in these cases. In 2,674 cases of newborns from June 2013 to June 2014, found deafness mutation in 137 cases (5.12 % of carrier rate), carrying GJB2 mutations in 68 cases (2.54 % of carry rate), GJB3 mutations in 10 cases (0.37 % of carry rate), SLC26A4 mutations in 54 cases (2.02 % of carry rate), and mitochondrial 12S rRNA mutations in five cases (0.19 % of carry rate). The study concludes that GJB2 gene mutation is the most common and mitochondrial 12S rRNA mutations are the least common mutation for congenital hearing loss in Chinese newborns.

Keywords

GBJ2 GBJ3 Congenital hearing loss Mitochondrial 12S rRNA 

References

  1. 1.
    Snoeckx, R. L., Huygen, P. L., Feldmann, D., et al. (2005). GJB2 mutations and degree of hearing loss: A multicenter study. American Journal of Human Genetics, 77, 945–957.PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Hilgert, N., Smith, R. J., & Van Camp, G. (2009). Forty-six genes causing nonsyndromic hearing impairment: Which ones should be analyzed in DNA diagnostics? Mutation Research, 681, 189–196.PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Kenneson, A., Van Naarden Braun, K., & Boyle, C. (2002). GJB2 (connexin 26) variants and nonsyndromic sensorineural hearing loss: A HuGE review. Genetics in Medicine, 4, 258–274.CrossRefPubMedGoogle Scholar
  4. 4.
    Xiao, Z. A., & Xie, D. H. (2004). GJB2 (Cx26) gene mutations in Chinese patients with congenital sensorineural deafness and a report of one novel mutation. Chinese Medical Journal, 117(12), 1797–1801.PubMedGoogle Scholar
  5. 5.
    Bitner-Glindzicz, M. (2002). Hereditary deafness and phenotyping in humans. British Medical Bulletin, 63, 73–94.CrossRefPubMedGoogle Scholar
  6. 6.
    Rabionet, R., Gasparini, P., Estivill, X. (2002) Connexins and deafness homepage. www.crg.es/deafness/.
  7. 7.
    Bruzzone, R., White, T. W., & Paul, D. L. (1996). Connections with connexins: the molecular basis of direct intercellular signaling. European Journal of Biochemistry, 238, 1–27.CrossRefPubMedGoogle Scholar
  8. 8.
    Harris, A. L., & Bevans, C. G. (2001). Exploring hemichannel permeability in vitro. Methods in Molecular Biology, 154, 357–377.PubMedGoogle Scholar
  9. 9.
    Chang, E. H., van Camp, G., & Smith, R. J. (2003). The role of connexins in human disease. Ear and Hearing, 24, 314–323.CrossRefPubMedGoogle Scholar
  10. 10.
    Kikuchi, T., Kimura, R. S., Paul, D. L., & Adams, J. C. (1995). Gap junctions in the rat cochlea: Immunohistochemical and ultrastructural analysis. Anatomy and embryology (Berl), 191, 101–118.CrossRefGoogle Scholar
  11. 11.
    Liu, X. Z., Xia, X. J., Xu, L. R., et al. (2000). Mutations in connexin31 underlie recessive as well as dominant non-syndromic hearing loss. Human molecular genetics, 9(1), 63–67.CrossRefPubMedGoogle Scholar
  12. 12.
    Coucke, P., Van Camp, G., Djoyodiharjo, B., et al. (1994). Linkage of autosomal dominant hearing loss to the short arm of chromosome 1 in two families. New England Journal of Medicine, 331(7), 425–431.CrossRefPubMedGoogle Scholar
  13. 13.
    Yuan, Y., Guo, W., Tang, J., Zhang, G., Wang, G., et al. (2012). Molecular epidemiology and functional assessment of novel allelic variants of SLC26A4 in non-syndromic hearing loss patients with enlarged vestibular aqueduct in China. PLoS One, 7(11), e49984. doi: 10.1371/journal.pone.0049984.PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Wangemann, P., Nakaya, K., Wu, T., Maganti, R. J., Itza, E. M., et al. (2007). Loss of cochlear HCO3- secretion causes deafness via endolymphatic acidification and inhibition of Ca2+ reabsorption in a Pendred syndrome mouse model. American Journal of Physiology-Renal Physiology, 292, F1345–F1353.PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Campbell, C., Cucci, R. A., Prasad, S., Green, G. E., Edeal, J. B., et al. (2001). (2001) Pendred syndrome, DFNB4, and PDS/SLC26A4 identification of eight novel mutations and possible genotype-phenotype correlations. Human Mutation, 17, 403–441.CrossRefPubMedGoogle Scholar
  16. 16.
    Lodish, H. F., Berk, A., Matsudaira, P., Kaiser, C. A., Krieger, M., Scott, M. P., et al. (2004). Molecular Cell Biology (5th ed., pp. 230–231). New York: W.H. Freeman and Company. ISBN 0-7167-4366-3.Google Scholar
  17. 17.
    Rabionet, R., Gasparini, P., & Estivilli, X. (2000). (2000) Molecular genetics of hearing impairment due to mutations in gap junctions genes encoding beta connexins. Huma. Mut, 16, 190–202.CrossRefGoogle Scholar
  18. 18.
    Oshima, A., Doi, T., Mitsuoka, K., Maeda, S., & Fujiyoshi, Y. (2003). Roles of Met-34, Cys-64, and Arg-75 in the assembly of human connexin 26: Implication for key amino acid residues for channel formation and function. Journal of Biological Chemistry, 278, 1807–1816.CrossRefPubMedGoogle Scholar
  19. 19.
    Skerrett, I. M., Di, W. L., Kasperek, E. M., Kelsell, D. P., & Nicholson, B. J. (2004). Aberrant gating, but a normal expression pattern, underlies the recessive phenotype of the deafness mutant Connexin26M34T. The FASEB Journal, 18, 860–862.PubMedGoogle Scholar
  20. 20.
    Beltramello, M., Piazza, V., Bukauskas, F. F., Pozzan, T., & Mammano, F. (2005). Impaired permeability to ins(1,4,5)p3 in a mutant connexin underlies recessive hereditary deafness. Nature Cell Biology, 7, 63–69.CrossRefPubMedGoogle Scholar
  21. 21.
    Park, H. J., Shaukat, S., Liu, X. Z., Hahn, S. H., Naz, S., et al. (2003). Origins and frequencies of SLC26A4 (PDS) mutations in east and south Asians: global implications for the epidemiology of deafness. Journal of Medical Genetics, 40, 242–248.PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Yoon, J. S., Park, H. J., Yoo, S. Y., Namkung, W., Jo, M. J., et al. (2008). Heterogeneity in the processing defect of SLC26A4 mutants. Journal of Medical Genetics, 45, 411–419.CrossRefPubMedGoogle Scholar
  23. 23.
    Taylor, J. P., Metcalfe, R. A., Watson, P. F., Weetman, A. P., & Trembath, R. C. (2002). Mutations of the PDS gene, encoding pendrin, are associated with protein mislocalization and loss of iodide efflux: implications for thyroid dysfunction in Pendred syndrome. Journal of Clinical Endocrinology and Metabolism, 87, 1778–1784.CrossRefPubMedGoogle Scholar
  24. 24.
    Choi, B. Y., Stewart, A. K., Madeo, A. C., Pryor, S. P., Lenhard, S., et al. (2009). Hypofunctional SLC26A4 variants associated with nonsyndromic hearing loss and enlargement of the vestibular aqueduct: genotype-phenotype correlation or coincidental polymorphisms? Human Mutation, 30, 599–608.PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Dossena, S., Vezzoli, V., Cerutti, N., Bazzini, C., Tosco, M., et al. (2006). Functional characterization of wild-type and a mutated form of SLC26A4 identified in patient with Pendred syndrome. Cellular Physiology and Biochemistry, 17, 245–256.CrossRefPubMedGoogle Scholar
  26. 26.
    Pera, A., Villamar, M., Vi˜nuela, A., Gand, M., et al. (2008). A mutational analysis of the SLC26A4 gene in Spanish hearing-impaired families provides new insights into the genetic causes of Pendred syndrome and DFNB4 hearing loss. European Journal of Human Genetics, 2008(16), 888–896.CrossRefGoogle Scholar
  27. 27.
    Lopez-Bigas, N., Olive, M., Rabionet, R., et al. (2001). Connexin 31 (GJB3) is expressed in the peripheral and auditory nerves and causes neuropathy and hearing impairment. Human molecular genetics, 10(9), 947–952.CrossRefPubMedGoogle Scholar
  28. 28.
    Liu, X. Z., Xia, X. J., Xu, L. R., Pandya, A., Liang, C. Y., Blanton, S. H., et al. (2000). Mutations connexin31 underlie recessive as well as dominant non-syndromic hearing loss. Human Molecular Genetics, 9(1), 63–67.CrossRefPubMedGoogle Scholar
  29. 29.
    Qinjun, Wei, Shuai, Wang, Jun, Yao, et al. (2013). Genetic mutations of GJB2 and mitochondrial 12S rRNA in nonsyndromic hearing loss in Jiangsu. Journal of Translational Medicine, 11, 163.CrossRefGoogle Scholar
  30. 30.
    Zhao, H., Young, W.-Y., Ya, Q., et al. (2005). Functional characterization of the mitochondrial 12S rRNA C1494T mutation associated with aminoglycoside-induced and non-syndromic hearing loss. Nucleic Acids Research, 33(3), 1132–1139.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Yuan Fang
    • 1
  • Maosheng Gu
    • 1
  • Chuanxia Wang
    • 1
  • Feng Suo
    • 1
  • Guangming Wang
    • 2
    Email author
  • Yujuan Xia
    • 3
  1. 1.Genetic Medicine CenterXuzhou Maternity and Child Health Care HospitalXuzhouPeople’s Republic of China
  2. 2.Department of RadiologyXuzhou Central HospitalXuzhouPeople’s Republic of China
  3. 3.Department of Obstetrics and GynecologyXuzhou Maternity and Child Health Care HospitalXuzhouPeople’s Republic of China

Personalised recommendations