Cell Biochemistry and Biophysics

, Volume 72, Issue 3, pp 771–775 | Cite as

Gold Nanoparticles: Recent Advances in the Biomedical Applications

  • Xiaoying ZhangEmail author
Original Paper


Among the multiple branches of nanotechnology applications in the area of medicine and biology, Nanoparticle technology is the fastest growing and shows significant future promise. Nanoscale structures, with size similar to many biological molecules, show different physical and chemical properties compared to either small molecules or bulk materials, find many applications in the fields of biomedical imaging and therapy. Gold nanoparticles (AuNPs) are relatively inert in biological environment, and have a number of physical properties that are suitable for several biomedical applications. For example, AuNPs have been successfully employed in inducing localized hyperthermia for the destruction of tumors or radiotherapy for cancer, photodynamic therapy, computed tomography imaging, as drug carriers to tumors, bio-labeling through single particle detection by electron microscopy and in photothermal microscopy. Recent advances in synthetic chemistry makes it possible to make gold nanoparticles with precise control over physicochemical and optical properties that are desired for specific clinical or biological applications. Because of the availability of several methods for easy modification of the surface of gold nanoparticles for attaching a ligand, drug or other targeting molecules, AuNPs are useful in a wide variety of applications. Even though gold is biologically inert and thus shows much less toxicity, the relatively low rate of clearance from circulation and tissues can lead to health problems and therefore, specific targeting of diseased cells and tissues must be achieved before AuNPs find their application for routine human use.


Gold nanoparticles Photodynamic therapy Nanomaterials Nanomedicine Photothermal therapy Drug carriers 


  1. 1.
    Krpetic, Z., Anguissola, S., Garry, D., Kelly, P. M., & Dawson, K. A. (2014). Nanomaterials: Impact on cells and cell organelles. Advances in Experimental Medicine and Biology, 811, 135–156.PubMedCrossRefGoogle Scholar
  2. 2.
    Vigderman, L., & Zubarev, E. R. (2013). Therapeutic platforms based on gold nanoparticles and their covalent conjugates with drug molecules. Advanced Drug Delivery Reviews, 65, 663–676.PubMedCrossRefGoogle Scholar
  3. 3.
    Sanhai, W. R., Sakamoto, J. H., Canady, R., & Ferrari, M. (2008). Seven challenges for nanomedicine. Nature Nanotechnology, 3, 242–244.PubMedCrossRefGoogle Scholar
  4. 4.
    Valentini, P., & Pompa, P. P. (2013). Gold nanoparticles for naked-eye DNA detection: Smart designs for sensitive assays. RSC Advances, 3, 19181–19190.CrossRefGoogle Scholar
  5. 5.
    Ghosh, P., Han, G., De, M., Kim, C. K., & Rotello, V. M. (2008). Gold nanoparticles in delivery applications. Advanced Drug Delivery Reviews, 60, 1307–1315.PubMedCrossRefGoogle Scholar
  6. 6.
    Butterworth, K. T., McMahon, S. J., Currell, F. J., & Prise, K. M. (2012). Physical basis and biological mechanisms of gold nanoparticle radiosensitization. Nanoscale., 4, 4830–4838.PubMedCrossRefGoogle Scholar
  7. 7.
    Lynch, I., Salvati, A., & Dawson, K. A. (2009). Protein-nanoparticle interactions: What does the cell see? Nature Nanotechnology, 4, 546–547.PubMedCrossRefGoogle Scholar
  8. 8.
    Sahay, G., Alakhova, D. Y., & Kabanov, A. V. (2010). Endocytosis of nanomedicines. Journal of Control Release., 145, 182–195.CrossRefGoogle Scholar
  9. 9.
    Gao, H., Shi, W., & Freund, L. B. (2005). Mechanics of receptor-mediated endocytosis. Proceedings of the National Academy of Sciences of the United States of America, 102, 9469–9474.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Nel, A. E., Madler, L., Velegol, D., Xia, T., Hoek, E. M., Somasundaran, P., et al. (2009). Understanding biophysicochemical interactions at the nano-bio interface. Nature Materials, 8, 543–557.PubMedCrossRefGoogle Scholar
  11. 11.
    Lee, J., Chatterjee, D. K., Lee, M. H., & Krishnan, S. (2014). Gold nanoparticles in breast cancer treatment: Promise and potential pitfalls. Cancer Letters, 347, 46–53.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Sau, T. K., & Murphy, C. J. (2004). Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. Journal of the American Chemical Society, 126, 8648–8649.PubMedCrossRefGoogle Scholar
  13. 13.
    Lin, M., Pei, H., Yang, F., Fan, C., & Zuo, X. (2013). Applications of gold nanoparticles in the detection and identification of infectious diseases and biothreats. Advanced Materials, 25, 3490–3496.PubMedCrossRefGoogle Scholar
  14. 14.
    Bastus, N. G., Comenge, J., & Puntes, V. (2011). Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: Size focusing versus ostwald ripening. Langmuir, 27, 11098–11105.PubMedCrossRefGoogle Scholar
  15. 15.
    Grzelczak, M., Perez-Juste, J., Mulvaney, P., & Liz-Marzan, L. M. (2008). Shape control in gold nanoparticle synthesis. Chemical Society Reviews, 37, 1783–1791.PubMedCrossRefGoogle Scholar
  16. 16.
    Kanaras, A. G., Kamounah, F. S., Schaumburg, K., Kiely, C. J., Brust, M. (2002). Thioalkylated tetraethylene glycol: A new ligand for water soluble monolayer protected gold clusters. Chemical Communications (Camb), 20, 2294–2295.Google Scholar
  17. 17.
    Cao-Milan, R., & Liz-Marzan, L. M. (2014). Gold nanoparticle conjugates: Recent advances toward clinical applications. Expert Opinion on Drug Delivery, 11, 741–752.PubMedCrossRefGoogle Scholar
  18. 18.
    Khlebtsov, N., & Dykman, L. (2011). Biodistribution and toxicity of engineered gold nanoparticles: A review of in vitro and in vivo studies. Chemical Society Reviews, 40, 1647–1671.PubMedCrossRefGoogle Scholar
  19. 19.
    Popovtzer, R., Agrawal, A., Kotov, N. A., Popovtzer, A., Balter, J., Carey, T. E., & Kopelman, R. (2008). Targeted gold nanoparticles enable molecular ct imaging of cancer. Nano Letters, 8, 4593–4596.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Hainfeld, J. F., Dilmanian, F. A., Slatkin, D. N., & Smilowitz, H. M. (2008). Radiotherapy enhancement with gold nanoparticles. Journal of Pharmacy and Pharmacology, 60, 977–985.PubMedCrossRefGoogle Scholar
  21. 21.
    Weissleder, R. (2001). A clearer vision for in vivo imaging. Nature Biotechnology, 19, 316–317.PubMedCrossRefGoogle Scholar
  22. 22.
    Dykman, L., & Khlebtsov, N. (2012). Gold nanoparticles in biomedical applications: Recent advances and perspectives. Chemical Society Reviews, 41, 2256–2282.PubMedCrossRefGoogle Scholar
  23. 23.
    Hainfeld, J. F., Smilowitz, H. M., O’Connor, M. J., Dilmanian, F. A., & Slatkin, D. N. (2013). Gold nanoparticle imaging and radiotherapy of brain tumors in mice. Nanomedicine (London)., 8, 1601–1609.PubMedCentralCrossRefGoogle Scholar
  24. 24.
    Kah, J. C., Wong, K. Y., Neoh, K. G., Song, J. H., Fu, J. W., Mhaisalkar, S., et al. (2009). Critical parameters in the pegylation of gold nanoshells for biomedical applications: An in vitro macrophage study. Journal of Drug Targeting, 17, 181–193.PubMedCrossRefGoogle Scholar
  25. 25.
    Hainfeld, J. F., Slatkin, D. N., & Smilowitz, H. M. (2004). The use of gold nanoparticles to enhance radiotherapy in mice. Physics in Medicine & Biology, 49, N309–315.CrossRefGoogle Scholar
  26. 26.
    Dreaden, E. C., Mackey, M. A., Huang, X., Kang, B., & El-Sayed, M. A. (2011). Beating cancer in multiple ways using nanogold. Chemical Society Reviews, 40, 3391–3404.PubMedCrossRefGoogle Scholar
  27. 27.
    Dickerson, E. B., Dreaden, E. C., Huang, X., El-Sayed, I. H., Chu, H., Pushpanketh, S., et al. (2008). Gold nanorod assisted near-infrared plasmonic photothermal therapy (pptt) of squamous cell carcinoma in mice. Cancer Letters, 269, 57–66.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Hainfeld, J. F., Dilmanian, F. A., Zhong, Z., Slatkin, D. N., Kalef-Ezra, J. A., & Smilowitz, H. M. (2010). Gold nanoparticles enhance the radiation therapy of a murine squamous cell carcinoma. Physics in Medicine & Biology, 55, 3045–3059.CrossRefGoogle Scholar
  29. 29.
    Giuliano, A. E., Hunt, K. K., Ballman, K. V., Beitsch, P. D., Whitworth, P. W., Blumencranz, P. W., et al. (2011). Axillary dissection vs no axillary dissection in women with invasive breast cancer and sentinel node metastasis: A randomized clinical trial. JAMA, 305, 569–575.PubMedCrossRefGoogle Scholar
  30. 30.
    Oberdorster, G., Oberdorster, E., & Oberdorster, J. (2005). Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environmental Health Perspectives, 113, 823–839.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Lasagna-Reeves, C., Gonzalez-Romero, D., Barria, M. A., Olmedo, I., Clos, A., Sadagopa Ramanujam, V. M., et al. (2010). Bioaccumulation and toxicity of gold nanoparticles after repeated administration in mice. Biochemical and Biophysical Research Communications, 393, 649–655.PubMedCrossRefGoogle Scholar
  32. 32.
    Love, S. A., Thompson, J. W., & Haynes, C. L. (2012). Development of screening assays for nanoparticle toxicity assessment in human blood: Preliminary studies with charged au nanoparticles. Nanomedicine (London)., 7, 1355–1364.CrossRefGoogle Scholar
  33. 33.
    Glazer, E. S., Zhu, C., Hamir, A. N., Borne, A., Thompson, C. S., & Curley, S. A. (2011). Biodistribution and acute toxicity of naked gold nanoparticles in a rabbit hepatic tumor model. Nanotoxicology., 5, 459–468.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Gad, S. C., Sharp, K. L., Montgomery, C., Payne, J. D., & Goodrich, G. P. (2012). Evaluation of the toxicity of intravenous delivery of auroshell particles (gold-silica nanoshells). International Journal of Toxicology, 31, 584–594.PubMedCrossRefGoogle Scholar
  35. 35.
    Svarovsky, S. A., Szekely, Z., & Barchi, J. J. (2005). Synthesis of gold nanoparticles bearing the thomsen–friedenreich disaccharide: A new multivalent presentation of an important tumor antigen. Tetrahedron Asymmetry, 16, 587–598.CrossRefGoogle Scholar
  36. 36.
    Ojeda, R., de Paz, J. L., Barrientos, A. G., Martin-Lomas, M., & Penades, S. (2007). Preparation of multifunctional glyconanoparticles as a platform for potential carbohydrate-based anticancer vaccines. Carbohydrate Research, 342, 448–459.PubMedCrossRefGoogle Scholar
  37. 37.
    Parry, A. L., Clemson, N. A., Ellis, J., Bernhard, S. S., Davis, B. G., & Cameron, N. R. (2013). ‘Multicopy multivalent’ glycopolymer-stabilized gold nanoparticles as potential synthetic cancer vaccines. Journal of the American Chemical Society, 135, 9362–9365.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.National Hepatobiliary and Enteric Surgery Research Center, Ministry of Health, Xiangya HospitalCentral South UniversityChangshaPeople’s Republic of China

Personalised recommendations