Cell Biochemistry and Biophysics

, Volume 70, Issue 2, pp 845–855 | Cite as

Biochemical Modifications and Neuronal Damage in Brain of Young and Adult Rats After Long-Term Exposure to Mobile Phone Radiations

  • Tarek K. Motawi
  • Hebatallah A. DarwishEmail author
  • Yasser M. Moustafa
  • Mohammed M. Labib
Original Paper


This study investigated the effect of exposure to mobile phone radiations on oxidative stress and apoptosis in brain of rats. Rats were allocated into six groups (three young and three adult). Groups 1 and 4 were not subjected to the radiation source and served as control groups. In groups 2 and 5, the mobile phones were only connected to the global system for mobile communication, while in groups 3 and 6, the option of calling was in use. Microwaves were generated by a mobile test phone (SAR = 1.13 W/kg) during 60 days (2 h/day). Significant increments in conjugated dienes, protein carbonyls, total oxidant status, and oxidative stress index along with a significant reduction of total antioxidant capacity levels were evident after exposure. Bax/Bcl-2 ratio, caspase-3 activity, and tumor necrosis factor-alpha level were enhanced, whereas no DNA fragmentation was detected. The relative brain weight of young rats was greatly affected, and histopathological examination reinforced the neuronal damage. The study highlights the detrimental effects of mobile phone radiations on brain during young and adult ages. The interaction of these radiations with brain is via dissipating its antioxidant status and/or triggering apoptotic cell death.


Mobile phone Brain Oxidative stress Apoptosis Neuronal damage Rats 



Bcl-2-associated X protein


Blood brain barrier

Bcl- 2

Beta cell lymphoma-2


Electromagnetic field


Electromagnetic radiation


Free radicals


Global system for mobile communication




Oxidative stress index

Pr Co

Protein carbonyls


Reactive oxygen species


Specific absorption rate


Total antioxidant capacity


Tumor necrosis factor-alpha


Total oxidant status



The authors gratefully acknowledge the financial assistance provided by the Faculty of Pharmacy, Cairo University, Egypt. The authors are also thankful to Dr Adel Bakeer, Histology Department, Faculty of Veterinary Medicine, Cairo University, for performing the histopathological examination in this study.

Conflict of interest

The authors declare that there are no conflicts of interest.


  1. 1.
    Verschaeve, L., & Maes, A. (1998). Genetic, carcinogenic and teratogenic effects of radiofrequency fields. Mutation Research, 410(2), 141–165.PubMedCrossRefGoogle Scholar
  2. 2.
    Repacholi, M. H. (2001). Health risks from the use of mobile phones. Toxicology Letters, 120(1–3), 323–331.PubMedCrossRefGoogle Scholar
  3. 3.
    Preece, A. W., Iwi, G., Davies-Smith, A., Wesnes, K., Butler, S., Lim, E., et al. (1999). Effect of a 915-MHz simulated mobile phone signal on cognitive function in man. International Journal of Radiation Biology, 75(4), 447–456.PubMedCrossRefGoogle Scholar
  4. 4.
    Bartsch, H., Bartsch, C., Seebald, E., Deeberg, F., Dietz, K., Vollrath, L., et al. (2002). Chronic exposure to a GSM-like signal (mobile phone) doesn’t stimulate the development of DMBA-induced mammary tumors in rats: results of three consecutive studies. Radiation Research, 157(2), 183–190.PubMedCrossRefGoogle Scholar
  5. 5.
    Bortkiewicz, A. (2001). A study on the biological effects of exposure mobile-phone frequency EMF. Medycyna Pracy, 52(2), 101–106.PubMedGoogle Scholar
  6. 6.
    Riu, P. J., Foster, K. R., Blick, D. W., & Adair, E. R. (1997). A thermal model of human thresholds of microwave-evoked warmth sensations. Bioelectromagnetics., 18(8), 578–583.PubMedCrossRefGoogle Scholar
  7. 7.
    Koivisto, M., Krause, C. M., Revonsuo, A., Laine, M., & Hamalainen, H. (2000). The effects of electromagnetic field emitted by GSM phones on working memory. NeuroReport, 11(8), 1641–1643.PubMedCrossRefGoogle Scholar
  8. 8.
    Belyaev, I. Y., Koch, C. B., Terenius, O., Roxstrom-Lindquist, K., Malmgren, L. O., Sommer, W. H., et al. (2006). Exposure of rat brain to 915 MHz GSM microwaves induces changes in gene expression but not double stranded DNA breaks or effects on chromatin conformation. Bioelectromagnetics., 27(4), 295–306.PubMedCrossRefGoogle Scholar
  9. 9.
    Irmak, M. K., Fadillioglu, E., Gulec, M., Erdogan, H., Yagmurca, M., & Akyol, O. (2002). Effects of electromagnetic radiation from a cellular telephone on the oxidant and anti-oxidant levels in rabbits. Cell Biochemistry and Function, 20(4), 279–283.PubMedCrossRefGoogle Scholar
  10. 10.
    Kerman, M., & Senol, N. (2012). Oxidative stress in hippocampus induced by 900 MHz electromagnetic field emitting mobile phone: Protection by melatonin. Biomedical Research, 23(1), 147–151.Google Scholar
  11. 11.
    Nittby, H., Grafström, G., Eberhardt, J. L., Malmgren, L., Brun, A., Persson, B. R., et al. (2008). Radiofrequency and extremely low-frequency electromagnetic field effects on the blood–brain barrier. Electromagnetic Biology and Medicine, 27(2), 103–126.PubMedCrossRefGoogle Scholar
  12. 12.
    Eberhardt, J. L., Persson, B. R., Brun, A. E., Salford, L. G., & Malmgren, L. O. (2008). Blood–brain barrier permeability and nerve cell damage in rat brain 14 and 28 days after exposure to microwaves from GSM mobile phones. Electromagnetic Biology and Medicine, 27(3), 215–229.PubMedCrossRefGoogle Scholar
  13. 13.
    Ozben, T. (2007). Oxidative stress and apoptosis: Impact on cancer therapy. Journal of Pharmaceutical Sciences, 96(9), 2181–2196.PubMedCrossRefGoogle Scholar
  14. 14.
    Ameison, J. C., & Capron, A. (1991). Cell dysfunction and depletion in AIDS: The programmed cell death hypothesis. Immunology Today, 12(4), 102–105.CrossRefGoogle Scholar
  15. 15.
    Tian, F., Nakahara, T., Yashida, M., Honda, N., Hirose, H., & Miyakoshi, J. (2002). Exposure to power frequency magnetic fields suppresses X-ray-induced apoptosis transiently in Ku80-deficient Xrs5 cells. Biochemical and Biophysical Research Communications, 292(2), 355–361.PubMedCrossRefGoogle Scholar
  16. 16.
    Dasdag, S., Akdag, M. Z., Ulukaya, E., Uzunlar, A. K., & Ocak, A. R. (2009). Effect of mobile phone exposure on apoptotic glial cells and status of oxidative stress in rat brain. Electromagnetic Biology and Medicine, 28(4), 342–354.PubMedCrossRefGoogle Scholar
  17. 17.
    Joubert, V., Bourthoumieu, S., Leveque, P., & Yardin, C. (2008). Apoptosis is induced by radiofrequency fields through the caspase-independent mitochondrial pathway in cortical neurons. Radiation Research, 169(1), 38–45.PubMedCrossRefGoogle Scholar
  18. 18.
    Merola, P., Marino, C., Lovisolo, G. A., Pinto, R., Laconi, C., & Nigroni, A. (2006). Proliferation and apoptosis in a neuroblastoma cell line exposed to 900 MHz modulated radiofrequency field. Bioelectromagnetics., 27(3), 164–171.PubMedCrossRefGoogle Scholar
  19. 19.
    Ilhan, A., Gurelb, A., Armutcub, F., Kamislia, S., Irazc, M., Akyold, O., et al. (2004). Ginkgo biloba prevents mobile phone-induced oxidative stress in rat brain. International Journal of Clinical Chemistry, 340(1–2), 153–162.PubMedGoogle Scholar
  20. 20.
    Recknagel, R. O., & Glende, E. A. (1984). Spectrophotometric detection of lipid conjugated dienes. Methods in Enzymology, 105, 331–337.PubMedCrossRefGoogle Scholar
  21. 21.
    Reznick, A. Z., & Packer, L. (1994). Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods in Enzymology, 233, 357–363.PubMedCrossRefGoogle Scholar
  22. 22.
    Liu, R., Liu, I. Y., Bi, X., Thompson, R. F., Doctrow, S. R., & Malfroy, B. (2003). Reversal of age-related learning deficits and brain oxidative stress in mice with superoxide dismutase/catalase mimetics. Proceedings of the National Academy of Sciences of the United States of America, 100(14), 8526–8531.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Abd El Mohsen, M. M., Iravani, M. M., Spencer, J. P., Rose, S., Fahim, A. T., Motawi, T. M., et al. (2005). Age-associated changes in protein oxidation and proteasome activities in rat brain: modulation by antioxidants. Biochemical and Biophysical Research Communications, 336(2), 386–391.PubMedCrossRefGoogle Scholar
  24. 24.
    Erel, O. (2004). A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clinical Biochemistry, 37(4), 277–285.PubMedCrossRefGoogle Scholar
  25. 25.
    Erel, O. (2005). A new automated colorimetric method for measuring total oxidant status. Clinical Biochemistry, 38(12), 1103–1111.PubMedCrossRefGoogle Scholar
  26. 26.
    Taylor, P. C. (2001). Anti-TNF therapy for rheumatoid arthritis and other inflammatory diseases. Molecular Biotechnology, 19(2), 153–168.PubMedCrossRefGoogle Scholar
  27. 27.
    Fernandes-Alnemri, T., Litwack, G., & Alnemri, E. S. (1994). CPP32, a novel human apoptotic protein with homology to Caenorhabditis elegans cell death protein Ced-3 and mammalian interleukin-1 beta-converting enzyme. Journal of Biological Chemistry, 269(49), 30761–30764.PubMedGoogle Scholar
  28. 28.
    Lowry, O. H., Rosebrought, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193(1), 265–275.PubMedGoogle Scholar
  29. 29.
    Herrmann, M., Lorenz, H. M., Voll, R., Grunke, M., Woith, W., & Kalden, J. R. (1994). A rapid and simple method for the isolation of apoptotic DNA fragments. Nucleic Acid Research, 22(24), 5506–5507.CrossRefGoogle Scholar
  30. 30.
    Longo, M. C., Berninger, M. S., & Hartley, J. L. (1990). Use of uracil DNA glycosylase to control carry-over contamination in polymerase chain reactions. Gene, 93(1), 125–128.PubMedCrossRefGoogle Scholar
  31. 31.
    Banchchroft, J. D., Stevens, A., & Turner, D. R. (1996). Theory and practice of histological techniques (4th ed., p. 163). New York: Churchill Livingstone.Google Scholar
  32. 32.
    Poulletier de Gannes, F., Billaudel, B., Taxile, M., Haro, E., Ruffié, G., Lévêque, P., et al. (2009). Effects of Head-Only Exposure of Rats to GSM-900 on blood–brain barrier permeability and neuronal degeneration. Radiation Research, 172(3), 359–367.CrossRefGoogle Scholar
  33. 33.
    Pompella, A. (1997). Biochemistry and histochemistry of oxidative stress and lipid peroxidation. International Journal for Vitamin and Nutrition Research, 67(5), 289–297.PubMedGoogle Scholar
  34. 34.
    Moskovitz, J., Yim, M. B., & Chock, P. B. (2002). Free radicals and disease. Archives of Biochemistry and Biophysics, 397, 354–359.PubMedCrossRefGoogle Scholar
  35. 35.
    Sokolovic, D., Djindjic, B., Nicolic, J., Bjelacovic, G., Pavlovic, D., Kocic, G., et al. (2008). Melatonin reduces oxidative sStress induced by chronic exposure of microwave radiation from mobile phones in rat brain. Journal of Radiation Research, 49(6), 579–586.PubMedCrossRefGoogle Scholar
  36. 36.
    Ferlini, C., DeAngelis, C., Biselli, R., Distefano, M., Scambia, G., & Fattorossi, A. (1999). Sequence of metabolic changes during X-ray induced apoptosis. Experimental Cell Research, 247(1), 160–167.PubMedCrossRefGoogle Scholar
  37. 37.
    Nicholson, D. W. (1999). Caspase structure, proteolytic substrates and function during apoptotic cell death. Cell Death and Differentiation, 6(11), 1028–1042.PubMedCrossRefGoogle Scholar
  38. 38.
    Thornbery, N. A., & Lazebnik, Y. (1998). Caspases: Enemies within. Science, 281(5381), 1312–1316.CrossRefGoogle Scholar
  39. 39.
    Belyaev, I. Y., Hillert, L., Protopopova, M., Tamm, C., Malmgren, L. O., Persson, B. R., et al. (2005). 915 MHz microwaves and 50 Hz magnetic field affect chromatin conformation and 53BP1Foci in human lymphocytes from hypersensitive and healthy persons. Bioelectromagnetics., 26(3), 173–184.PubMedCrossRefGoogle Scholar
  40. 40.
    Olsson, G., Belyaev, I., Helleday, T., & Harms-Ringdahl, M. (2001). ELF electromagnetic field affects proliferation of SPD8/V79 Chinese hamster cells but does not interact with intragenic recombination. Mutation Research, 493(1–2), 55–66.PubMedCrossRefGoogle Scholar
  41. 41.
    Lin, H., Opler, M., Head, M., Blank, M., & Goodman, R. (1997). Electromagnetic field exposure induces rapid, transitory heat shock factor activation in human cells. Journal of Cellular Biochemistry, 66(4), 482–488.PubMedCrossRefGoogle Scholar
  42. 42.
    de Pomerai, D., Daniells, C., David, H., Allan, J., Duce, I., Mutwakil, M., et al. (2000). Non-thermal heat-shock response to microwaves. Nature, 405(6785), 417–418.PubMedCrossRefGoogle Scholar
  43. 43.
    Hook, G. J., Zhang, P., Lagroye, I., Li, L., Higashikubo, R., Moros, E. G., et al. (2004). Measurement of DNA damage and apoptosis in Molt-4 cells after in vitro exposure to radiofrequency radiation. Radiation Research, 161(2), 193–200.PubMedCrossRefGoogle Scholar
  44. 44.
    Joubert, V., Leveque, P., Cueille, M., Bourthoumieu, S., & Yardin, C. (2007). No apoptosis is induced in rat cortical neurons exposed to GSM phone fields. Bioelectromagnetics., 28(2), 115–121.PubMedCrossRefGoogle Scholar
  45. 45.
    Hamilton, B. F., Benjamin, S. A., Angleton, G. M., & Lee, A. C. (1989). The effect of perinatal 60Co gamma radiation on brain weight in beagles. Radiation Research, 119(2), 366–379.PubMedCrossRefGoogle Scholar
  46. 46.
    Ujiie, M., Dickstein, D. L., Carlow, D. A., & Jefferies, W. A. (2003). Blood–brain barrier permeability precedes senile plaque formation in an Alzheimer disease model. Microcirculation., 10(6), 463–470.PubMedGoogle Scholar
  47. 47.
    de Pomerai, D. I., Smith, B., Dawe, A., North, K., Smith, T., Archer, D. B., et al. (2003). Microwave radiation can alter protein conformation without bulk heating. FEBS Letters, 543(1–3), 93–97.PubMedCrossRefGoogle Scholar
  48. 48.
    Salford, L. G., Brun, A., Eberhardt, J. L., Malmgren, L., & Persson, B. R. (2003). Nerve cell damage in mammalian brain after exposure to microwaves from GSM mobile phones. Environmental Health Perspectives, 111(7), 881–883.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Poulletier de Gannes, F., Haro, E., Ladeveze, E., Taxile, M., Mayeur, L., Laclau, M., Lévêque, P., Ruffié, G., Billaudel, B., Lagroye, I., Veyret, B. (2006). Do GSM-900 signals affect blood–brain barrier permeability and neuron viability? 28th Ann Mtg Bioelectromagn Soc Cancun, Mexico. 2006 (pp. 164–165).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Tarek K. Motawi
    • 1
  • Hebatallah A. Darwish
    • 1
    Email author
  • Yasser M. Moustafa
    • 2
  • Mohammed M. Labib
    • 1
  1. 1.Department of Biochemistry, Faculty of PharmacyCairo UniversityCairoEgypt
  2. 2.Department of Pharmacology and Toxicology, Faculty of PharmacySuez Canal UniversityIsmailiaEgypt

Personalised recommendations