Cell Biochemistry and Biophysics

, Volume 70, Issue 1, pp 499–504

Ultrasound-Microbubble Transplantation of Bone Marrow Stromal Cells Improves Neurological Function after Forebrain Ischemia in Adult Mice

  • Zili Gong
  • Hong Ran
  • Shengzheng Wu
  • Jie Zhu
  • Jian Zheng
Original Paper

Abstract

In this study, bone marrow stromal cells (MSCs) were transplanted into the brain of adult rats after forebrain ischemia induced by 4VO. SD rats (n = 60) were randomly divided into three groups: (I) rats (n = 20) were subjected to 4VO and transplanted with MSCs into the ischemic region using ultrasound-microbubble method, (2) rats (n = 20) were subjected to 4VO and transplanted with MSCs into the ischemic region (n = 20), and (3) 4VO alone (n = 20). Rats were sacrificed 28 days after treatment. Neurological functions of rats were evaluated by Morris Water Maze. The current findings suggest that the ultrasound microbubble transplanted MSCs survived in the ischemic brain and significantly improved functional recovery of adult rats compared to regular transplantation.

Keywords

Bone marrow stromal cells Ultrasound microbubble Forebrain ischemia 

References

  1. 1.
    Studer, L., Tabar, V., & McKay, R. D. (1998). Transplantation of expanded mesencephalic precursors leads to recovery in parkinsonian rats. Nature Neuroscience, 1(4), 290–295.PubMedCrossRefGoogle Scholar
  2. 2.
    Snyder, E. Y., Deitcher, D. L., Walsh, C., Arnold-Aldea, S., Hartwieg, E. A., & Cepko, C. L. (1992). Multipotent neural cell lines can engraft and participate in development of mouse cerebellum. Cell, 68(1), 33–51.PubMedCrossRefGoogle Scholar
  3. 3.
    Lundberg, C., Field, P. M., Ajayi, Y. O., Raisman, G., & Bjorklund, A. (1996). Conditionally immortalized neural progenitor cell lines integrate and differentiate after grafting to the adult rat striatum. A combined autoradiographic and electron microscopic study. Brain Research, 737(1–2), 295–300.PubMedCrossRefGoogle Scholar
  4. 4.
    Grabowski, M., Brundin, P., & Johansson, B. B. (1992). Fetal neocortical grafts implanted in adult hypertensive rats with cortical infarcts following a middle cerebral artery occlusion: ingrowth of afferent fibers from the host brain. Experimental Neurology, 116(2), 105–121.PubMedCrossRefGoogle Scholar
  5. 5.
    Grabowski, M., Brundin, P., & Johansson, B. B. (1993). Functional integration of cortical grafts placed in brain infarcts of rats. Annals of neurology, 34(3), 362–368.PubMedCrossRefGoogle Scholar
  6. 6.
    Defer, G. L., Geny, C., Ricolfi, F., Fenelon, G., Monfort, J. C., Remy, P., et al. (1996). Long-term outcome of unilaterally transplanted parkinsonian patients. I. Clinical approach. Brain: A Journal of Neurology, 119(Pt 1), 41–50.CrossRefGoogle Scholar
  7. 7.
    Kordower, J. H., Freeman, T. B., Snow, B. J., Vingerhoets, F. J., Mufson, E. J., Sanberg, P. R., et al. (1995). Neuropathological evidence of graft survival and striatal reinnervation after the transplantation of fetal mesencephalic tissue in a patient with Parkinson’s disease. The New England Journal of Medicine, 332(17), 1118–1124.PubMedCrossRefGoogle Scholar
  8. 8.
    Jansen, E. M., Solberg, L., Underhill, S., Wilson, S., Cozzari, C., Hartman, B. K., et al. (1997). Transplantation of fetal neocortex ameliorates sensorimotor and locomotor deficits following neonatal ischemic-hypoxic brain injury in rats. Experimental Neurology, 147(2), 487–497.PubMedCrossRefGoogle Scholar
  9. 9.
    Borlongan, C. V., Tajima, Y., Trojanowski, J. Q., Lee, V. M., & Sanberg, P. R. (1998). Cerebral ischemia and CNS transplantation: differential effects of grafted fetal rat striatal cells and human neurons derived from a clonal cell line. NeuroReport, 9(16), 3703–3709.PubMedCrossRefGoogle Scholar
  10. 10.
    Eglitis, M. A., Dawson, D., Park, K. W., & Mouradian, M. M. (1999). Targeting of marrow-derived astrocytes to the ischemic brain. NeuroReport, 10(6), 1289–1292.PubMedCrossRefGoogle Scholar
  11. 11.
    Chen, J., Li, Y., & Chopp, M. (2000). Intracerebral transplantation of bone marrow with BDNF after MCAo in rat. Neuropharmacology, 39(5), 711–716.PubMedCrossRefGoogle Scholar
  12. 12.
    Karlsson, S. (1991). Treatment of genetic defects in hematopoietic cell function by gene transfer. Blood, 78(10), 2481–2492.PubMedGoogle Scholar
  13. 13.
    Walsh, C. E., Nienhuis, A. W., Samulski, R. J., Brown, M. G., Miller, J. L., Young, N. S., et al. (1994). Phenotypic correction of Fanconi anemia in human hematopoietic cells with a recombinant adeno-associated virus vector. The Journal of Clinical Investigation, 94(4), 1440–1448.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Prockop, D. J. (1997). Marrow stromal cells as stem cells for nonhematopoietic tissues. Science, 276(5309), 71–74.PubMedCrossRefGoogle Scholar
  15. 15.
    Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284(5411), 143–147.PubMedCrossRefGoogle Scholar
  16. 16.
    Bruder, S. P., Jaiswal, N., Ricalton, N. S., Mosca, J. D., Kraus, K. H., & Kadiyala, S. (1998). Mesenchymal stem cells in osteobiology and applied bone regeneration. Clinical Orthopaedics and Related Research, 355, 247–256.CrossRefGoogle Scholar
  17. 17.
    Colter, D. C., Class, R., DiGirolamo, C. M., & Prockop, D. J. (2000). Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. Proceedings of the National Academy of Sciences of the United States of America, 97(7), 3213–3218.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Horwitz, E. M., Prockop, D. J., Fitzpatrick, L. A., Koo, W. W., Gordon, P. L., Neel, M., et al. (1999). Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nature Medicine, 5(3), 309–313.PubMedCrossRefGoogle Scholar
  19. 19.
    Mason, J. M., Grande, D. A., Barcia, M., Grant, R., Pergolizzi, R. G., & Breitbart, A. S. (1998). Expression of human bone morphogenic protein 7 in primary rabbit periosteal cells: potential utility in gene therapy for osteochondral repair. Gene Therapy, 5(8), 1098–1104.PubMedCrossRefGoogle Scholar
  20. 20.
    Black, I. B., & Woodbury, D. (2001). Adult rat and human bone marrow stromal stem cells differentiate into neurons. Blood Cells, Molecules, & Diseases, 27(3), 632–636.CrossRefGoogle Scholar
  21. 21.
    Eglitis, M. A., & Mezey, E. (1997). Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proceedings of the National Academy of Sciences of the United States of America, 94(8), 4080–4085.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Li, Y., Chopp, M., Chen, J., Wang, L., Gautam, S. C., Xu, Y. X., et al. (2000). Intrastriatal transplantation of bone marrow nonhematopoietic cells improves functional recovery after stroke in adult mice. Journal of cerebral blood flow and metabolism: Official Journal of the International Society of Cerebral Blood Flow and Metabolism, 20(9), 1311–1319.CrossRefGoogle Scholar
  23. 23.
    Kopen, G. C., Prockop, D. J., & Phinney, D. G. (1999). Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proceedings of the National Academy of Sciences of the United States of America, 96(19), 10711–10716.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Chen, J., Li, Y., Wang, L., Zhang, Z., Lu, D., Lu, M., et al. (2001). Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke: A Journal of Cerebral Circulation, 32(4), 1005–1011.CrossRefGoogle Scholar
  25. 25.
    Li, Y., Chen, J., Wang, L., Lu, M., & Chopp, M. (2001). Treatment of stroke in rat with intracarotid administration of marrow stromal cells. Neurology, 56(12), 1666–1672.PubMedCrossRefGoogle Scholar
  26. 26.
    Zhao, L. R., Duan, W. M., Reyes, M., Keene, C. D., Verfaillie, C. M., & Low, W. C. (2002). Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats. Experimental Neurology, 174(1), 11–20.PubMedCrossRefGoogle Scholar
  27. 27.
    Chen, J., Li, Y., Wang, L., Lu, M., Zhang, X., & Chopp, M. (2001). Therapeutic benefit of intracerebral transplantation of bone marrow stromal cells after cerebral ischemia in rats. Journal of the Neurological Sciences, 189(1–2), 49–57.PubMedCrossRefGoogle Scholar
  28. 28.
    Pulsinelli, W. A., & Buchan, A. M. (1988). The four-vessel occlusion rat model: method for complete occlusion of vertebral arteries and control of collateral circulation. Stroke: A Journal of Cerebral Circulation, 19(7), 913–914.CrossRefGoogle Scholar
  29. 29.
    Pulsinelli, W. A., Levy, D. E., & Duffy, T. E. (1982). Regional cerebral blood flow and glucose metabolism following transient forebrain ischemia. Annals of Neurology, 11(5), 499–502.PubMedCrossRefGoogle Scholar
  30. 30.
    Chu, P. C., Chai, W. Y., Hsieh, H. Y., Wang, J. J., Wey, S. P., Huang, C. Y., et al. (2013). Pharmacodynamic analysis of magnetic resonance imaging-monitored focused ultrasound-induced blood-brain barrier opening for drug delivery to brain tumors. BioMed Research International, 2013, 627496.PubMedCentralPubMedGoogle Scholar
  31. 31.
    Goto, S., Yamada, K., Yoshikawa, M., Okamura, A., & Ushio, Y. (1997). GABA receptor agonist promotes reformation of the striatonigral pathway by transplant derived from fetal striatal primordia in the lesioned striatum. Experimental Neurology, 147(2), 503–509.PubMedCrossRefGoogle Scholar
  32. 32.
    Morris, R. (1984). Developments of a water-maze procedure for studying spatial learning in the rat. Journal of Neuroscience Methods, 11(1), 47–60.PubMedCrossRefGoogle Scholar
  33. 33.
    Morris, R. G., Garrud, P., Rawlins, J. N., & O’Keefe, J. (1982). Place navigation impaired in rats with hippocampal lesions. Nature, 297(5868), 681–683.PubMedCrossRefGoogle Scholar
  34. 34.
    Li, Y., Chen, J., Chen, X. G., Wang, L., Gautam, S. C., Xu, Y. X., et al. (2002). Human marrow stromal cell therapy for stroke in rat: neurotrophins and functional recovery. Neurology, 59(4), 514–523.PubMedCrossRefGoogle Scholar
  35. 35.
    Berezovskaya, O., Maysinger, D., & Fedoroff, S. (1996). Colony stimulating factor-1 potentiates neuronal survival in cerebral cortex ischemic lesion. Acta Neuropathologica, 92(5), 479–486.PubMedCrossRefGoogle Scholar
  36. 36.
    Maestroni, G. J., Cosentino, M., Marino, F., Togni, M., Conti, A., Lecchini, S., et al. (1998). Neural and endogenous catecholamines in the bone marrow. Circadian association of norepinephrine with hematopoiesis? Experimental Hematology, 26(12), 1172–1177.PubMedGoogle Scholar
  37. 37.
    Chen, X., Li, Y., Wang, L., Katakowski, M., Zhang, L., Chen, J., et al. (2002). Ischemic rat brain extracts induce human marrow stromal cell growth factor production. Neuropathology: Official Journal of the Japanese Society of Neuropathology, 22(4), 275–279.CrossRefGoogle Scholar
  38. 38.
    Lindholm, D. (1997). Neurotrophic factors and neuronal plasticity: is there a link? Advances in Neurology, 73, 1–6.PubMedGoogle Scholar
  39. 39.
    Hess, D. C., Hill, W. D., Martin-Studdard, A., Carroll, J., Brailer, J., & Carothers, J. (2002). Bone marrow as a source of endothelial cells and NeuN-expressing cells After stroke. Stroke; A Journal of Cerebral Circulation, 33(5), 1362–1368.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Zili Gong
    • 1
  • Hong Ran
    • 1
  • Shengzheng Wu
    • 2
  • Jie Zhu
    • 3
  • Jian Zheng
    • 1
  1. 1.Department of Neurology, Xinqiao HospitalThird Military Medical UniversityChongqingChina
  2. 2.Department of Ultrasound, Xinqiao HospitalThird Military Medical UniversityChongqiChina
  3. 3.Department of Neurology, Daping HospitalThird Military Medical UniversityChongqiChina

Personalised recommendations