Advertisement

Cell Biochemistry and Biophysics

, Volume 70, Issue 1, pp 301–307 | Cite as

Long-term Heat Exposure Prevents Hypoxia-Induced Apoptosis in Mouse Fibroblast Cells

  • Naotoshi SugimotoEmail author
  • Osamu Shido
  • Kentaro Matsuzaki
  • Masanori Katakura
  • Yoshiaki Hitomi
  • Masao Tanaka
  • Toshioki Sawaki
  • Yoshimasa Fujita
  • Takafumi Kawanami
  • Yasufumi Masaki
  • Toshiro Okazaki
  • Hiroyuki Nakamura
  • Shoichi Koizumi
  • Akihiro Yachie
  • Hisanori Umehara
Original Paper

Abstract

Long-term continuous exposure to high ambient temperatures induces complete heat acclimation in humans and animals. However, to date, the effects of long-term exposure to heat stress on cells have not been fully evaluated. In this study, we investigated an adaptive physiological process induced in culture cells by continuous exposure to mild heat stress for 60 days. The results of this investigation provide evidence that after long-term heat acclimation in cells, (1) heat shock protein levels are increased, (2) hypoxia inducible factor-1α (HIF-1α) expression is upregulated, and (3) heat shock-induced and hypoxia-induced apoptoses are attenuated. These results suggest that the hypoxia response pathway is an intrinsic part of the heat acclimation repertoire and that the HIF-1 pathway following long-term heat acclimation induces cells with cross tolerance against hypoxia.

Keywords

Heat acclimation Heat shock proteins HIF-1α Heat tolerance Cross tolerance 

Notes

Acknowledgments

This work was supported in part by Grants-in-Aid for Science and Culture (22249041 and 23659503 to H. U., 24659105 to N. S., and 23591531 to S. K.) from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and Kanazawa Medical University Research Foundation (C2010-1 to H. U.). The founders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References

  1. 1.
    Horowitz, M. (2003). Matching the heart to heat-induced circulatory load: Heat-acclimatory responses. News in Physiological Sciences, 18, 215–221.PubMedGoogle Scholar
  2. 2.
    Horowitz, M. (2007). Heat acclimation and crosstolerance against novel stressors: Genomic-physiological linkage. Progress in Brain Research, 162, 373–392.PubMedCrossRefGoogle Scholar
  3. 3.
    Shido, O., Sakurada, S., Sugimoto, N., & Nagasaka, T. (1995). Shifts of thermo effector thresholds in heat-acclimated rats. Journal of Physiology, 483, 491–497.PubMedCentralPubMedGoogle Scholar
  4. 4.
    Shido, O., Sugimoto, N., Tanabe, M., & Sakurada, S. (1999). Core temperature and sweating onset in humans acclimated to heat given at a fixed daily time. American Journal of Physiology, 276, R1095–R1101.PubMedGoogle Scholar
  5. 5.
    Sugimoto, N., Shido, O., & Sakurada, S. (1995). Thermoregulatory responses of rats acclimated to heat given daily at a fixed time. Journal of Applied Physiology, 78, 1720–1724.PubMedGoogle Scholar
  6. 6.
    Maloyan, A., Eli-Berchoer, L., Semenza, G. L., Gerstenblith, G., Stern, M. D., & Horowitz, M. (2005). HIF-1alpha-targeted pathways are activated by heat acclimate contribute to acclimation-ischemic cross-tolerance in the heart. Physiological Genomics, 23, 79–88.PubMedCrossRefGoogle Scholar
  7. 7.
    Sugimoto, N., Matsuzaki, K., Ishibashi, H., Tanaka, M., Sawaki, T., Fujita, Y., et al. (2013). Upregulation of aquaporin expression in the salivary glands of heat-acclimated rats. Scientific Reports, 3, 1763.PubMedCentralPubMedGoogle Scholar
  8. 8.
    Richter, K., Haslbeck, M., & Buchner, J. (2010). The heat shock responses: Life on the verge of death. Molecular Cell, 40, 253–266.PubMedCrossRefGoogle Scholar
  9. 9.
    Kühl, N. M., & Rensing, L. (2000). Heat shock effects on cell cycle progression. Cellular and Molecular Life Sciences, 57, 450–463.PubMedCrossRefGoogle Scholar
  10. 10.
    Han, S. I., Oh, S. Y., Jeon, W. J., Kim, J. M., Lee, J. H., Chung, H. Y., et al. (2002). Mild heat shock induces cyclin D1 synthesis through multiple Ras signal pathways. FEBS Letters, 515, 141–145.PubMedCrossRefGoogle Scholar
  11. 11.
    Prosser, C. L. (1991). Comparative animal physiology: Environmental and metabolic animal physiology. New York, NY: Wiley.Google Scholar
  12. 12.
    Wilson, R. S., & Franklin, C. E. (2002). Testing the beneficial acclimation hypothesis. Trends in Ecology and Evolution, 17, 66–70.CrossRefGoogle Scholar
  13. 13.
    Sinclair, E. L. E., Thompson, M. B., & Seebacher, F. (2006). Phenotypic flexibility in the metabolic response of the limpet Cellana tramoserica to thermally different microhabitats. Journal of Experimental Marine Biology and Ecology, 335, 131–141.CrossRefGoogle Scholar
  14. 14.
    Sugimoto, N., Shido, O., Matsuzaki, K., Ohno-Shosaku, T., Hitomi, Y., Tanaka, M., et al. (2012). Cellular heat acclimation regulates cell growth, cell morphology, mitogen-activated protein kinase activation, and expression of aquaporins in mouse fibroblast cells. Cellular Physiology and Biochemistry, 30, 450–457.PubMedCrossRefGoogle Scholar
  15. 15.
    Saito, T., Sugimoto, N., Ohta, K., Shimizu, T., Ohtani, K., Nakayama, Y., et al. (2012). Phosphodiesterase inhibitors suppress Lactobacillus casei cell-wall-induced NF-κB and MAPK activations and cell proliferation through protein kinase A–or exchange protein activated by cAMP-dependent signal pathway. Scientific World Journal, 2012, 748572.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Sugimoto, N., Miwa, S., Ohno-Shosaku, T., Tsuchiya, H., Hitomi, Y., Nakamura, H., et al. (2011). Activation of tumor suppressor protein PTEN and induction of apoptosis are involved in cAMP-mediated inhibition of cell number in B92 glial cells. Neuroscience Letters, 497, 55–59.PubMedCrossRefGoogle Scholar
  17. 17.
    Hagemann, C., & Blank, J. L. (2001). The ups and downs of MEK kinase interactions. Cellular Signalling, 13, 863–875.PubMedCrossRefGoogle Scholar
  18. 18.
    Westerheide, S. D., Raynes, R., Powell, C., Xue, B., & Uversky, V. N. (2012). HSF transcription factor family, heat shock response, and protein intrinsic disorder. Current Protein and Peptide Science, 13, 86–103.PubMedCrossRefGoogle Scholar
  19. 19.
    Sareh, H., Tulapurkar, M. E., Shah, N. G., Singh, I. S., & Hasday, J. D. (2011). Response of mice to continuous 5-day passive hyperthermia resembles human heat acclimation. Cell Stress Chaperones, 16, 297–307.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Keith, B., Johnson, R. S., & Simon, M. C. (2011). HIF1α and HIF2α: Sibling rivalry in hypoxic tumour growth and progression. Nature Reviews Cancer, 12, 9–22.PubMedCentralPubMedGoogle Scholar
  21. 21.
    Sata, N., Klonowski-Stumpe, H., Han, B., Häussinger, D., & Niederau, C. (1997). Menadione induces both necrosis and apoptosis in rat pancreatic acinar AR4-2J cells. Free Radical Biology and Medicine, 23, 844–850.PubMedCrossRefGoogle Scholar
  22. 22.
    Sawka, M. N., Young, A. J., Rock, P. B., Lyons, T. P., Boushel, R., Freund, B. J., et al. (1996). Altitude acclimatization and blood volume: Effects of exogenous erythrocyte volume expansion. Journal of Applied Physiology, 81, 636–642.PubMedGoogle Scholar
  23. 23.
    McClung, J. P., Hasday, J. D., He, J. R., Montain, S. J., Cheuvront, S. N., Sawka, M. N., et al. (2008). Exercise-heat acclimation in humans alters baseline levels and ex vivo heat inducibility of HSP72 and HSP90 in peripheral blood mononuclear cells. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 294, R185–R191.PubMedGoogle Scholar
  24. 24.
    Garrett, A. T., Goosens, N. G., Rehrer, N. J., Patterson, M. J., & Cotter, J. D. (2009). Induction and decay of short-term heat acclimation. European Journal of Applied Physiology, 107, 659–670.PubMedCrossRefGoogle Scholar
  25. 25.
    Horowitz, M., & Konesh, E. (2010). Molecular signals that shape the integrative responses of the heat-acclimated phenotype. Medicine and Science in Sports and Exercise, 42, 2164–2172.PubMedCrossRefGoogle Scholar
  26. 26.
    Horowitz, M., & Assadi, H. (2010). Heat acclimation–mediated cross-tolerance in cardioprotection. Do HSP70 and HIF-1α play a role? Annals of the New York Academy of Sciences, 1188, 199–206.PubMedCrossRefGoogle Scholar
  27. 27.
    Morimoto, R. I., & Santoro, M. G. (1998). Stress-inducible responses and heat shock proteins: New pharmacologic targets for cytoprotection. Nature Biotechnology, 16, 833–838.PubMedCrossRefGoogle Scholar
  28. 28.
    Creagh, E. M., Sheehan, D., & Cotter, T. G. (2000). Heat shock proteins modulators of apoptosis in tumour cells. Leukemia, 14, 1161–1173.PubMedCrossRefGoogle Scholar
  29. 29.
    Maloyan, A., Palmon, A., & Horowitz, M. (1999). Heat acclimation increases the basal HSP72 level and alters its production dynamics during heat stress. The American Journal of Physiology, 276, R1506–R1515.PubMedGoogle Scholar
  30. 30.
    Gong, X., Luo, T., Deng, P., Liu, Z., Xiu, J., Shi, H., et al. (2012). Stress-induced interaction between p38 MAPK and HSP70. Biochemical and Biophysical Research Communications, 425, 357–362.PubMedCrossRefGoogle Scholar
  31. 31.
    Portner, H. O. (2002). Climate variations and the physiological basis of temperature-dependent biogeography: Systemic to molecular hierarchy of thermal tolerance in animals. Comparative Biochemistry and Physiology Part A, 132, 739–761.CrossRefGoogle Scholar
  32. 32.
    Zhou, J., Schmid, T., Frank, R., & Brune, B. (2004). PI3K/Akt is required for heat shock proteins to protect hypoxia-inducible factor 1 from pVHL-independent degradation. Journal of Biological Chemistry, 279, 13506–13513.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Naotoshi Sugimoto
    • 1
    • 2
    Email author
  • Osamu Shido
    • 2
  • Kentaro Matsuzaki
    • 2
  • Masanori Katakura
    • 2
  • Yoshiaki Hitomi
    • 3
  • Masao Tanaka
    • 4
  • Toshioki Sawaki
    • 4
  • Yoshimasa Fujita
    • 4
  • Takafumi Kawanami
    • 4
  • Yasufumi Masaki
    • 4
  • Toshiro Okazaki
    • 4
  • Hiroyuki Nakamura
    • 3
  • Shoichi Koizumi
    • 5
  • Akihiro Yachie
    • 6
  • Hisanori Umehara
    • 4
  1. 1.Department of Physiology, Graduate School of Medical ScienceKanazawa UniversityKanazawaJapan
  2. 2.Department of Environmental Physiology, School of MedicineShimane UniversityIzumoJapan
  3. 3.Department of Public Health, Graduate School of Medical ScienceKanazawa UniversityKanazawaJapan
  4. 4.Department of Hematology and ImmunologyKanazawa Medical UniversityUchinadaJapan
  5. 5.United Graduate School of Child Development, Graduate School of Medical ScienceKanazawa UniversityKanazawaJapan
  6. 6.Department of Pediatrics, Graduate School of Medical ScienceKanazawa UniversityKanazawaJapan

Personalised recommendations