Cell Biochemistry and Biophysics

, Volume 70, Issue 1, pp 1–8 | Cite as

Guard of Delinquency? A Role of Microglia in Inflammatory Neurodegenerative Diseases of the CNS

Review Paper


Activation of microglia and inflammation-mediated neurotoxicity are believed to play an important role in the pathogenesis of several neurodegenerative disorders, including multiple sclerosis. Studies demonstrate complex functions of activated microglia that can lead to either beneficial or detrimental outcomes, depending on the form and the timing of activation. Combined with genetic and environmental factors, overactivation and dysregulation of microglia cause progressive neurotoxic consequences which involve a vicious cycle of neuron injury and unregulated neuroinflammation. Thus, modulation of microglial activation appears to be a promising new therapeutic target. While current therapies do attempt to block activation of microglia, they indiscriminately inhibit inflammation thus also curbing beneficial effects of inflammation and delaying recovery. Multiple signaling cascades, often cross-talking, are involved in every step of microglial activation. One of the key challenges is to understand the molecular mechanisms controlling cytokine expression and phagocytic activity, as well as cell-specific consequences of dysregulated cytokine expression. Further, a better understanding of how the integration of multiple cytokine signals influences the function or activity of individual microglia remains an important research objective to identify potential therapeutic targets for clinical intervention to promote repair.


Microglia Inflammation Neurodegeneration Activation Signaling Pathway 



This work was supported by the China National Natural Science Fund Project No. 812272791.


  1. 1.
    Campbell, A. (2004). Inflammation, neurodegenerative diseases, and environmental exposures. Annals of the New York Academy of Sciences, 1035, 117–132.PubMedCrossRefGoogle Scholar
  2. 2.
    Rivest, S. (2003). Molecular insights on the cerebral innate immune system. Brain, Behavior, and Immunity, 17, 13–19.PubMedCrossRefGoogle Scholar
  3. 3.
    Nadeau, S., & Rivest, S. (2003). Glucocorticoids play a fundamental role in protecting the brain during innate immune response. Journal of Neuroscience, 23, 5536–5544.PubMedGoogle Scholar
  4. 4.
    Gao, Z., & Tsirka, S. E. (2011). Animal models of MS reveal multiple roles of microglia in disease pathogenesis. Neurology Research International, 2011, 383087.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Barnett, M. H., & Prineas, J. W. (2004). Relapsing and remitting multiple sclerosis: Pathology of the newly forming lesion. Annals of Neurology, 55, 458–468.PubMedCrossRefGoogle Scholar
  6. 6.
    Barnett, M. H., Henderson, A. P., & Prineas, J. W. (2006). The macrophage in MS: Just a scavenger after all? Pathology and pathogenesis of the acute MS lesion. Multiple Sclerosis, 12, 121–132.PubMedCrossRefGoogle Scholar
  7. 7.
    Bertram, L., & Tanzi, R. E. (2005). The genetic epidemiology of neurodegenerative disease. The Journal of Clinical Investigation, 115, 1449–1457.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Griffin, W. S. (2006). Inflammation and neurodegenerative diseases. American Journal of Clinical Nutrition, 2006(83), 470S–474S.Google Scholar
  9. 9.
    Keen, D., & Ward, S. (2004). Autistic spectrum disorder: A child population profile. Autism, 8, 39–48.PubMedCrossRefGoogle Scholar
  10. 10.
    Kern, J. K., & Jones, A. M. (2006). Evidence of toxicity, oxidative stress, and neuronal insult in autism. Journal of Toxicology and Environmental Health, Part B. Critical Reviews, 9, 485–499.CrossRefGoogle Scholar
  11. 11.
    Larsson, H. J., Eaton, W. W., Madsen, K. M., Vestergaard, M., Olesen, A. V., Agerbo, E., et al. (2005). Risk factors for autism: Perinatal factors, parental psychiatric history, and socioeconomic status. American Journal of Epidemiology, 161, 916–925.PubMedCrossRefGoogle Scholar
  12. 12.
    Muravchick, S., & Levy, R. J. (2006). Clinical implications of mitochondrial dysfunction. Anesthesiology, 105, 819–837.PubMedCrossRefGoogle Scholar
  13. 13.
    Granieri, E., Casetta, I., Tola, M. R., & Ferrante, P. (2001). Multiple sclerosis: Infectious hypothesis. Neurological Sciences, 22, 179–185.PubMedCrossRefGoogle Scholar
  14. 14.
    Hauss-Wegrzyniak, B., Dobrzanski, P., Stoehr, J. D., & Wenk, G. L. (1998). Chronic neuroinflammation in rats reproduces components of the neurobiology of Alzheimer’s disease. Brain Research, 780, 294–303.PubMedCrossRefGoogle Scholar
  15. 15.
    Calderon-Garciduenas, L., Azzarelli, B., Acuna, H., Garcia, R., Gambling, T. M., Osnaya, N., et al. (2002). Air pollution and brain damage. Toxicologic Pathology, 30, 373–389.PubMedCrossRefGoogle Scholar
  16. 16.
    Authier, F. J., Cherin, P., Creange, A., Bonnotte, B., Ferrer, X., Abdelmoumni, A., et al. (2001). Central nervous system disease in patients with macrophagic myofasciitis. Brain, 124, 974–983.PubMedCrossRefGoogle Scholar
  17. 17.
    Bishop, N. J., Morley, R., Day, J. P., & Lucas, A. (1997). Aluminum neurotoxicity in preterm infants receiving intravenous-feeding solutions. New England Journal of Medicine, 336, 1557–1561.PubMedCrossRefGoogle Scholar
  18. 18.
    Ngoi, S. M., Sylvester, F. A., & Vella, A. T. (2011). The role of microbial byproducts in protection against immunological disorders and the hygiene hypothesis. Discovery Medicines, 12, 405–412.Google Scholar
  19. 19.
    Schulte, C., & Gasser, T. (2011). Genetic basis of Parkinson’s disease: Inheritance, penetrance, and expression. Application of Clinical Genetics, 4, 80.Google Scholar
  20. 20.
    Scrimshaw, N. S., & SanGiovanni, J. P. (1997). Synergism of nutrition, infection, and immunity: An overview. American Journal of Clinical Nutrition, 66, 464S–477S.PubMedGoogle Scholar
  21. 21.
    Tollervey, J. R., Wang, Z., Hortobagyi, T., Witten, J. T., Zarnack, K., Kayikci, M., et al. (2011). Analysis of alternative splicing associated with aging and neurodegeneration in the human brain. Genome Research, 21, 1572–1582.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Glovsky, M. M., Ward, P. A., & Johnson, K. J. (2004). Complement determinations in human disease. Annals of Allergy, Asthma & Immunology, 93, 513–522.CrossRefGoogle Scholar
  23. 23.
    Gao, H. M., Zhou, H., Zhang, F., Wilson, B. C., Kam, W., & Hong, J. S. (2011). HMGB1 acts on microglia Mac1 to mediate chronic neuroinflammation that drives progressive neurodegeneration. Journal of Neuroscience, 31, 1081–1092.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Pei, Z., Pang, H., Qian, L., Yang, S., Wang, T., Zhang, W., et al. (2007). MAC1 mediates LPS-induced production of superoxide by microglia: The role of pattern recognition receptors in dopaminergic neurotoxicity. Glia, 55, 1362–1373.PubMedCrossRefGoogle Scholar
  25. 25.
    Zhang, D., Hu, X., Qian, L., Chen, S. H., Zhou, H., Wilson, B., et al. (2011). Microglial MAC1 receptor and PI3K are essential in mediating beta-amyloid peptide-induced microglial activation and subsequent neurotoxicity. Journal of Neuroinflammation, 8, 3.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Magnus, T., Chan, A., Savill, J., Toyka, K. V., & Gold, R. (2002). Phagocytotic removal of apoptotic, inflammatory lymphocytes in the central nervous system by microglia and its functional implications. Journal of Neuroimmunology, 130, 1–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Smith, M. E. (1999). Phagocytosis of myelin in demyelinative disease: A review. Neurochemical Research, 1999(24), 261–268.CrossRefGoogle Scholar
  28. 28.
    Kacimi, R., Giffard, R. G., & Yenari, M. A. (2011). Endotoxin-activated microglia injure brain derived endothelial cells via NF-kappaB, JAK-STAT and JNK stress kinase pathways. Journal of Inflammation (London), 8, 7.CrossRefGoogle Scholar
  29. 29.
    Kohji, T., & Matsumoto, Y. (2000). Coexpression of Fas/FasL and Bax on brain and infiltrating T cells in the central nervous system is closely associated with apoptotic cell death during autoimmune encephalomyelitis. Journal of Neuroimmunology, 106, 165–171.PubMedCrossRefGoogle Scholar
  30. 30.
    Aloisi, F. (2001). Immune function of microglia. Glia, 36, 165–179.PubMedCrossRefGoogle Scholar
  31. 31.
    Carpentier, P. A., Duncan, D. S., & Miller, S. D. (2008). Glial toll-like receptor signaling in central nervous system infection and autoimmunity. Brain, Behavior, and Immunity, 22, 140–147.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    O’Brien, K., Fitzgerald, D. C., Naiken, K., Alugupalli, K. R., Rostami, A. M., & Gran, B. (2008). Role of the innate immune system in autoimmune inflammatory demyelination. Current Medicinal Chemistry, 15, 1105–1115.PubMedCrossRefGoogle Scholar
  33. 33.
    Lehnardt, S., Massillon, L., Follett, P., Jensen, F. E., Ratan, R., Rosenberg, P. A., et al. (2003). Activation of innate immunity in the CNS triggers neurodegeneration through a toll-like receptor 4-dependent pathway. Proceedings of the National Academy of Sciences of the United States of America, 100, 8514–8519.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Aloisi, F., Ria, F., & Adorini, L. (2000). Regulation of T-cell responses by CNS antigen-presenting cells: Different roles for microglia and astrocytes. Immunology Today, 21, 141–147.PubMedCrossRefGoogle Scholar
  35. 35.
    Dheen, S. T., Kaur, C., & Ling, E. A. (2007). Microglial activation and its implications in the brain diseases. Current Medicinal Chemistry, 14, 1189–1197.PubMedCrossRefGoogle Scholar
  36. 36.
    Nakamura, Y. (2002). Regulating factors for microglial activation. Biological & Pharmaceutical Bulletin, 25, 945–953.CrossRefGoogle Scholar
  37. 37.
    Jang, S., Kelley, K. W., & Johnson, R. W. (2008). Luteolin reduces IL-6 production in microglia by inhibiting JNK phosphorylation and activation of AP-1. Proceedings of the National Academy of Sciences of the United States of America, 105, 7534–7539.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Lin, M. W., Tsao, L. T., Chang, L. C., Chen, Y. L., Huang, L. J., Kuo, S. C., et al. (2007). Inhibition of lipopolysaccharide-stimulated NO production by a novel synthetic compound CYL-4d in RAW 264.7 macrophages involving the blockade of MEK4/JNK/AP-1 pathway. Biochemical Pharmacology, 73, 1796–1806.PubMedCrossRefGoogle Scholar
  39. 39.
    Waetzig, V., Czeloth, K., Hidding, U., Mielke, K., Kanzow, M., Brecht, S., et al. (2005). c-Jun N-terminal kinases (JNKs) mediate pro-inflammatory actions of microglia. Glia, 50, 235–246.PubMedCrossRefGoogle Scholar
  40. 40.
    Minogue, A. M., Barrett, J. P., & Lynch, M. A. (2012). LPS-induced release of IL-6 from glia modulates production of IL-1 beta in a JAK2-dependent manner. Journal of Neuroinflammation, 9, 126.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Qin, H., Roberts, K. L., Niyongere, S. A., Cong, Y., Elson, C. O., & Benveniste, E. N. (2007). Molecular mechanism of lipopolysaccharide-induced SOCS-3 gene expression in macrophages and microglia. The Journal of Immunology, 179, 5966–5976.PubMedCrossRefGoogle Scholar
  42. 42.
    Cassatella, M. A., Gasperini, S., Bovolenta, C., Calzetti, F., Vollebregt, M., Scapini, P., et al. (1999). Interleukin-10 (IL-10) selectively enhances CIS3/SOCS3 mRNA expression in human neutrophils: Evidence for an IL-10-induced pathway that is independent of STAT protein activation. Blood, 94, 2880–2889.PubMedGoogle Scholar
  43. 43.
    Niemand, C., Nimmesgern, A., Haan, S., Fischer, P., Schaper, F., Rossaint, R., et al. (2003). Activation of STAT3 by IL-6 and IL-10 in primary human macrophages is differentially modulated by suppressor of cytokine signaling 3. The Journal of Immunology, 170, 3263–3272.PubMedCrossRefGoogle Scholar
  44. 44.
    Qin, H., Wilson, C. A., Roberts, K. L., Baker, B. J., Zhao, X., & Benveniste, E. N. (2006). IL-10 inhibits lipopolysaccharide-induced CD40 gene expression through induction of suppressor of cytokine signaling-3. The Journal of Immunology, 177, 7761–7771.PubMedCrossRefGoogle Scholar
  45. 45.
    Wong, P. K., Egan, P. J., Croker, B. A., O’Donnell, K., Sims, N. A., Drake, S., et al. (2006). SOCS-3 negatively regulates innate and adaptive immune mechanisms in acute IL-1-dependent inflammatory arthritis. Journal of Clinical Investigation, 116, 1571–1581.PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    El Kasmi, K. C., Holst, J., Coffre, M., Mielke, L., de, P. A., Lhocine, N., et al. (2006). General nature of the STAT3-activated anti-inflammatory response. The Journal of Immunology, 177, 7880–7888.PubMedCrossRefGoogle Scholar
  47. 47.
    Murray, P. J. (2005). The primary mechanism of the IL-10-regulated antiinflammatory response is to selectively inhibit transcription. Proceedings of the National Academy of Sciences of the United States of America, 2005(102), 8686–8691.CrossRefGoogle Scholar
  48. 48.
    Staples, K. J., Smallie, T., Williams, L. M., Foey, A., Burke, B., Foxwell, B. M., et al. (2007). IL-10 induces IL-10 in primary human monocyte-derived macrophages via the transcription factor Stat3. The Journal of Immunology, 178, 4779–4785.PubMedCrossRefGoogle Scholar
  49. 49.
    Fabrizi, C., Pompili, E., Panetta, B., Nori, S. L., & Fumagalli, L. (2009). Protease-activated receptor-1 regulates cytokine production and induces the suppressor of cytokine signaling-3 in microglia. International Journal of Molecular Medicine, 24, 367–371.PubMedCrossRefGoogle Scholar
  50. 50.
    Cohen, S. J., Cohen, I. R., & Nussbaum, G. (2010). IL-10 mediates resistance to adoptive transfer experimental autoimmune encephalomyelitis in MyD88(−/−) mice. The Journal of Immunology, 184, 212–221.PubMedCrossRefGoogle Scholar
  51. 51.
    Mirshafiey, A., & Mohsenzadegan, M. (2009). TGF-beta as a promising option in the treatment of multiple sclerosis. Neuropharmacology, 56, 929–936.PubMedCrossRefGoogle Scholar
  52. 52.
    Li, Y., Chu, N., Rostami, A., & Zhang, G. X. (2006). Dendritic cells transduced with SOCS-3 exhibit a tolerogenic/DC2 phenotype that directs type 2 Th cell differentiation in vitro and in vivo. The Journal of Immunology, 177, 1679–1688.PubMedCrossRefGoogle Scholar
  53. 53.
    Nguyen, T. L., Sullivan, N. L., Ebel, M., Teague, R. M., & DiPaolo, R. J. (2011). Antigen-specific TGF-beta-induced regulatory T cells secrete chemokines, regulate T cell trafficking, and suppress ongoing autoimmunity. The Journal of Immunology, 187, 1745–1753.PubMedCrossRefGoogle Scholar
  54. 54.
    Lucchinetti, C., Bruck, W., Parisi, J., Scheithauer, B., Rodriguez, M., & Lassmann, H. (2000). Heterogeneity of multiple sclerosis lesions: Implications for the pathogenesis of demyelination. Annals of Neurology, 47, 707–717.PubMedCrossRefGoogle Scholar
  55. 55.
    Patani, R., Balaratnam, M., Vora, A., & Reynolds, R. (2007). Remyelination can be extensive in multiple sclerosis despite a long disease course. Neuropathology and Applied Neurobiology, 33, 277–287.PubMedCrossRefGoogle Scholar
  56. 56.
    Patrikios, P., Stadelmann, C., Kutzelnigg, A., Rauschka, H., Schmidbauer, M., Laursen, H., et al. (2006). Remyelination is extensive in a subset of multiple sclerosis patients. Brain, 129, 3165–3172.PubMedCrossRefGoogle Scholar
  57. 57.
    Choi, D. K., Koppula, S., & Suk, K. (2011). Inhibitors of microglial neurotoxicity: Focus on natural products. Molecules, 16, 1021–1043.PubMedCrossRefGoogle Scholar
  58. 58.
    Aktas, O., Prozorovski, T., & Zipp, F. (2006). Death ligands and autoimmune demyelination. Neuroscientist, 12, 305–316.PubMedCrossRefGoogle Scholar
  59. 59.
    Austin, J. W., & Fehlings, M. G. (2008). Molecular mechanisms of Fas-mediated cell death in oligodendrocytes. Journal of Neurotrauma, 25, 411–426.PubMedCrossRefGoogle Scholar
  60. 60.
    Li, W., Maeda, Y., Ming, X., Cook, S., Chapin, J., Husar, W., et al. (2002). Apoptotic death following Fas activation in human oligodendrocyte hybrid cultures. Journal of Neuroscience Research, 69, 189–196.PubMedCrossRefGoogle Scholar
  61. 61.
    Gallo, V., & Armstrong, R. C. (2008). Myelin repair strategies: A cellular view. Current Opinion in Neurology, 21, 278–283.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of NeurosurgeryWuxi Third People’s HospitalWuxiChina
  2. 2.Department of NeurosurgeryWuxi People’s Hospital of Nanjing Medical UniversityWuxiChina
  3. 3.Department of NeurosurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina

Personalised recommendations