Cell Biochemistry and Biophysics

, Volume 72, Issue 2, pp 399–403 | Cite as

Effect of Cyclophosphamide on Expression of MMP-9 and TGF-β1 in Renal Tissue of Rats with Diabetes Mellitus

  • Yan Zhang
  • Ge Wu
  • Xiaozhou Hu
  • Jin ZhangEmail author
Original Paper


Diabetic nephropathy (DN) is a severe microvascular complication that occurs in diabetes patients. In this study, we investigated the effect of cyclophosphamide (CTX) on expression of matrix metalloproteinases (MMP-9) and transforming growth factor-β1 (TGF-β1) in renal tissue of rats with DN. We found CTX significantly reduces KI and blood glucose levels, microalbuminuria, and blood urea nitrogen. It also decreases the expression of TGF-β1 and increases the expression of MMP-9. Our data suggest CTX may reduce the excretion of urine proteins, alleviate kidney hypertrophy, and reduce blood glucose level through regulation of TGF-β1 and MMP-9 gene expression.


Diabetic nephropathy Cyclophosphamide Matrix metalloproteinase Transforming growth factor-β1 


  1. 1.
    Wang, J., Gao, Y., Ma, M., et al. (2013). Effect of miR-21 on renal fibrosis by regulating MMP-9 and TIMP1 in kk-ay diabetic nephropathy mice. Cell Biochemistry and Biophysics, 67(2), 537–546.PubMedCrossRefGoogle Scholar
  2. 2.
    Somani, R., Singhai, A. K., Shivgunde, P., et al. (2012). Asparagus racemosus Willd (Liliaceae) ameliorates early diabetic nephropathy in STZ induced diabetic rats. Indian Journal of Experimental Biology, 50(7), 469–475.Google Scholar
  3. 3.
    Michael, S. T., Ganesh, R. N., Viswanathan, P., et al. (2012). Effect of long acting insulin supplementation on diabetic nephropathy in Wistar rats. Indian Journal of Experimental Biology, 50(12), 867–874.PubMedGoogle Scholar
  4. 4.
    Hirayama, A., Nakashima, E., Sugimoto, M., et al. (2012). Metabolic profiling reveals new serum biomarkers for differentiating diabetic nephropathy. Analytical and Bioanalytical Chemistry, 404(10), 3101–3109.PubMedCrossRefGoogle Scholar
  5. 5.
    Plum, L. A., & Zella, J. B. (2012). Vitamin D compounds and diabetic nephropathy. Archives of Biochemistry and Biophysics, 523(1), 87–94.PubMedCrossRefGoogle Scholar
  6. 6.
    Donadio, J. V, Jr, Torres, V. E., Velosa, J. A., et al. (1988). Idiopathic membranous nephropathy: The natural history of untreated patients. Kidney International, 33(3), 708–715.PubMedCrossRefGoogle Scholar
  7. 7.
    Zhu, C., Liang, Q.-L., Hu, P., et al. (2011). Phospholipidomic identification of potential plasma biomarkers associated with type 2 diabetes mellitus and diabetic nephropathy. Talanta, 85(4), 1711–1720.PubMedCrossRefGoogle Scholar
  8. 8.
    Datta, S. K., Kumar, V., Ahmed, R. S., et al. (2010). Effect of GSTM1 and GSTT1 double deletions in the development of oxidative stress in diabetic nephropathy patients. Indian Journal of Biochemistry & Biophysics, 47(2), 100–103.Google Scholar
  9. 9.
    Jiang, Z. T., Liang, Q. L., Luo, G. A., et al. (2009). HPLC-electrospray tandem mass spectrometry for simultaneous quantitation of eight plasma aminothiols: Application to studies of diabetic nephropathy. Talanta, 77(4), 1279–1284.PubMedCrossRefGoogle Scholar
  10. 10.
    Zhang, Jie, Yan, Lijuan, Chen, Wengui, et al. (2009). Metabonomics research of diabetic nephropathy and type 2 diabetes mellitus based on UPLC-oaTOF-MS system. Analytica Chimica Acta, 650(1), 16–22.PubMedCrossRefGoogle Scholar
  11. 11.
    Xia, J. F., Liang, Q. L., Liang, X. P., et al. (2009). Ultraviolet and tandem mass spectrometry for simultaneous quantification of 21 pivotal metabolites in plasma from patients with diabetic nephropathy. Journal of Chromatography, B: Analytical Technologies in the Biomedical and Life Sciences, 877(20/21), 1930–1936.PubMedCrossRefGoogle Scholar
  12. 12.
    Bock, F., Shahzad, K., Wang, H., et al. (2013). Activated protein C ameliorates diabetic nephropathy by epigenetically inhibiting the redox enzyme p66 ~ (Shc). Proceedings of the National Academy of Sciences of the USA, 110(2), 648–653.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Mizuno, S., & Nakamura, T. (2004). Suppressions of chronic glomerular injuries and TGF-β1 production by HGF in attenuation of murine diabetic nephropathy. American Journal of Physiology-Renal Physiology, 286(1), F134–F143.PubMedCrossRefGoogle Scholar
  14. 14.
    Russo, L. M., del Re, E., Brown, D., et al. (2007). Evidence for a role of transforming growth factor (TGF)-β1 in the induction of postglomerular albuminuria in diabetic nephropathy amelioration by soluble TGF-β type II receptor. Diabetes, 56(2), 380–388.PubMedCrossRefGoogle Scholar
  15. 15.
    Schaan, B. D. A., Lacchini, S., Bertoluci, M. C., et al. (2001). Increased renal GLUT1 abundance and urinary TGF-β1 in streptozotocin-induced diabetic rats: Implications for the development of nephropathy complicating diabetes. Hormone and Metabolic Research, 33(11), 664–669.CrossRefGoogle Scholar
  16. 16.
    Lin, M.-H., Chen, H.-Y., Liao, T.-H., et al. (2011). Determination of time-dependent accumulation of d-lactate in the streptozotocin-induced diabetic rat kidney by column-switching HPLC with fluorescence detection. Journal of Chromatography, B: Analytical Technologies in the Biomedical and Life Sciences, 879(29), 3214–3219.PubMedCrossRefGoogle Scholar
  17. 17.
    Wolf, G., & Ziyadeh, F. N. (2007). Cellular and molecular mechanisms of proteinuria in diabetic nephropathy. Nephron Physiology, 106(2), 26–31.CrossRefGoogle Scholar
  18. 18.
    Mariee, A. D., Abd-Allah, G. M., El-Yamany, M. F., et al. (2009). Renal oxidative stress and nitric oxide production in streptozotocin-induced diabetic nephropathy in rats: The possible modulatory effects of garlic (Allium sativum L.). Biotechnology and Applied Biochemistry, 52(3), 227–232.PubMedCrossRefGoogle Scholar
  19. 19.
    Kiran, G., Nandini, C. D., Ramesh, H. P., et al. (2012). Progression of early phase diabetic nephropathy in streptozotocin-induced diabetic rats: Evaluation of various kidney-related parameters. Indian Journal of Experimental Biology, 50(2), 133–140.PubMedGoogle Scholar
  20. 20.
    Hamano, Y., Zeisberg, M., Sugimoto, H., et al. (2003). Physiological levels of tumstatin, a fragment of collagen IV α3 chain, are generated by MMP-9 proteolysis and suppress angiogenesis via αVβ3 integrin. Cancer Cell, 3(6), 589–601.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Nephrology5th Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
  2. 2.Department of Nephrology1st Affiliated Hospital of Zhengzhou UniversityZhengzhouChina

Personalised recommendations