Cell Biochemistry and Biophysics

, Volume 71, Issue 3, pp 1425–1443 | Cite as

The Role of Oxidative Stress in Diabetic Neuropathy: Generation of Free Radical Species in the Glycation Reaction and Gene Polymorphisms Encoding Antioxidant Enzymes to Genetic Susceptibility to Diabetic Neuropathy in Population of Type I Diabetic Patients

  • Mark A. BabizhayevEmail author
  • Igor A. Strokov
  • Valery V. Nosikov
  • Ekaterina L. Savel’yeva
  • Vladimir F. Sitnikov
  • Yegor E. Yegorov
  • Vadim Z. Lankin
Original Paper


Diabetic neuropathy (DN) represents the main cause of morbidity and mortality among diabetic patients. Clinical data support the conclusion that the severity of DN is related to the frequency and duration of hyperglycemic periods. The presented experimental and clinical evidences propose that changes in cellular function resulting in oxidative stress act as a leading factor in the development and progression of DN. Hyperglycemia- and dyslipidemia-driven oxidative stress is a major contributor, enhanced by advanced glycation end product (AGE) formation and polyol pathway activation. There are several polymorphous pathways that lead to oxidative stress in the peripheral nervous system in chronic hyperglycemia. This article demonstrates the origin of oxidative stress derived from glycation reactions and genetic variations within the antioxidant genes which could be implicated in the pathogenesis of DN. In the diabetic state, unchecked superoxide accumulation and resultant increases in polyol pathway activity, AGEs accumulation, protein kinase C activity, and hexosamine flux trigger a feed-forward system of progressive cellular dysfunction. In nerve, this confluence of metabolic and vascular disturbances leads to impaired neural function and loss of neurotrophic support, and over the long term, can mediate apoptosis of neurons and Schwann cells, the glial cells of the peripheral nervous system. In this article, we consider AGE-mediated reactive oxygen species (ROS) generation as a pathogenesis factor in the development of DN. It is likely that oxidative modification of proteins and other biomolecules might be the consequence of local generation of superoxide on the interaction of the residues of l-lysine (and probably other amino acids) with α-ketoaldehydes. This phenomenon of non-enzymatic superoxide generation might be an element of autocatalytic intensification of pathophysiological action of carbonyl stress. Glyoxal and methylglyoxal formed during metabolic pathway are detoxified by the glyoxalase system with reduced glutathione as co-factor. The concentration of reduced glutathione may be decreased by oxidative stress and by decreased in situ glutathione reductase activity in diabetes mellitus. Genetic variations within the antioxidant genes therefore could be implicated in the pathogenesis of DN. In this work, the supporting data about the association between the −262T > C polymorphism of the catalase (CAT) gene and DN were shown. The −262TT genotype of the CAT gene was significantly associated with higher erythrocyte catalase activity in blood of DN patients compared to the −262CC genotype (17.8 ± 2.7 × 104 IU/g Hb vs. 13.5 ± 3.2 × 104 IU/g Hb, P = 0.0022). The role of these factors in the development of diabetic complications and the prospective prevention of DN by supplementation in formulations of transglycating imidazole-containing peptide-based antioxidants (non-hydrolyzed carnosine, carcinine, n-acetylcarcinine) scavenging ROS in the glycation reaction, modifying the activity of enzymic and non-enzymic antioxidant defenses that participate in metabolic processes with ability of controlling at transcriptional levels the differential expression of several genes encoding antioxidant enzymes inherent to DN in Type I Diabetic patients, now deserve investigation.


Advanced glycation Maillard reaction α-Dicarbonyl compounds Superoxide anion radical production Diabetic neuropathy Catalase promoter polymorphisms Glutathione Gene encoding glutathione S-transferase Therapeutic treatment of diabetic neuropathy Imidazole-based Dipeptide Mimetics 



This work was planned, organized, and supported by Innovative Vision Products, Inc. (County of New Castle, DE, USA). Innovative Vision Products Inc. is a Pharmaceutical and Nanotechnology Development Company with a focus on innovative chemical entities, drug delivery systems, and unique medical devices to target specific biomedical applications. Over the last decade, IVP has developed a track record in developing these technologies to effectively address the unmet needs of specific diseased populations.

Conflict of interest

The authors report no conflict of interest in this work. The authors bear primary responsibility for accuracy of made statements and employment of the described products and for the content and writing of the paper.


  1. 1.
    Windebank, A. J., & Feldman, E. L. (2001). Diabetes and the nervous system. In M. J. Aminoff (Ed.), Neurology and general medicine (pp. 341–364). Philadelphia, PA: Churchill Livingstone.Google Scholar
  2. 2.
    Brownlee, M. (2001). Biochemistry and molecular cell biology of diabetic complications. Nature, 414(6865), 813–820.PubMedGoogle Scholar
  3. 3.
    Feldman, E. L. (2003). Oxidative stress and diabetic neuropathy: A new understanding of an old problem. The Journal of Clinical Investigation, 111(4), 431–433.PubMedCentralPubMedGoogle Scholar
  4. 4.
    Gardner, T. W., Antonetti, D. A., Barber, A. J., LaNoue, K. F., & Levison, S. W. (2002). Diabetic retinopathy: More than meets the eye. Survey of Ophthalmology, 47(Suppl 2), S253–S262.PubMedGoogle Scholar
  5. 5.
    Fong, D. S., Aiello, L., Gardner, T. W., King, G. L., Blankenship, G., Cavallerano, J. D., et al. (2003). Diabetic retinopathy. Diabetes Care, 26(1), 226–229.PubMedGoogle Scholar
  6. 6.
    Fong, D. S., Aiello, L., Gardner, T. W., King, G. L., Blankenship, G., Cavallerano, J. D., et al. (2003). Diabetic retinopathy. Diabetes Care, 26(Suppl 1), S99–S102.PubMedGoogle Scholar
  7. 7.
    Skyler, J. S. (2001). Microvascular complications. Retinopathy and nephropathy. Endocrinology and Metabolism Clinics of North America, 30(4), 833–856.PubMedGoogle Scholar
  8. 8.
    Calcutt, N. A. (2002). Potential mechanisms of neuropathic pain in diabetes. International Review of Neurobiology, 50, 205–228.PubMedGoogle Scholar
  9. 9.
    Feldman, E. L., Stevens, M. J., & Russell, J. W. (2002). Diabetic peripheral and autonomic neuropathy. In M. A. Sperling (Ed.), Contemporary endocrinology (pp. 437–461). Totowa, NJ: Humana Press.Google Scholar
  10. 10.
    Feldman, E. L., Stevens, M. J., Russell, J. W., & Greene, D. A. (2002). Somatosensory neuropathy. In D. Porte Jr, R. S. Sherwin, & A. Baron (Eds.), Ellenberg and Rifkin’s diabetes mellitus (pp. 771–788). New York: McGraw Hill.Google Scholar
  11. 11.
    Vinik, A. I. (2002). Diabetic autonomic neuropathy. In D. Porte Jr, R. S. Sherwin, & A. Baron (Eds.), Ellenberg and Rifkin’s diabetes mellitus (pp. 789–804). New York: McGraw Hill.Google Scholar
  12. 12.
    Feldman, E. L., Stevens, M. J., Russell, J. W., & Greene, D. A. (2001). Diabetic neuropathy. In K. L. Becker (Ed.), Principles and practice of endocrinology and metabolism (pp. 1391–1399). Philadelphia, PA: Lippincott Williams & Wilkins.Google Scholar
  13. 13.
    Dyck. P. J., Kratz, K. M., Karnes, J. L., Litchy, W. J., Klein, R., Pach, J. M., et al. (1993). The prevalence by staged severity of various types of diabetic neuropathy, retinopathy, and nephropathy in a population-based cohort: The Rochester Diabetic Neuropathy Study. Neurology, 43(4), 817–824. Erratum in: Neurology 1993; 43(11):2345.Google Scholar
  14. 14.
    Dyck, P. J., Giannini, C. (1996). Pathologic alterations in the diabetic neuropathies of humans: A review. Journal of Neuropathology and Experimental Neurology, 55(12), 1181–1193. Comment in: Journal of Neuropathology and Experimental Neurology 1997; 56(4):458.Google Scholar
  15. 15.
    Boel, E., Selmer, J., Flodgaard, H. J., & Jensen, T. (1995). Diabetic late complications: Will aldose reductase inhibitors or inhibitors of advanced glycosylation endproduct formation hold promise? Journal of Diabetes and Its Complications, 9(2), 104–129.PubMedGoogle Scholar
  16. 16.
    Poduslo, J. F., & Curran, G. L. (1992). Increased permeability across the blood–nerve barrier of albumin glycated in vitro and in vivo from patients with diabetic polyneuropathy. Proceedings of the National Academy of Science of the USA, 89(6), 2218–2222.Google Scholar
  17. 17.
    Sugimoto, K., Nishizawa, Y., Horiuchi, S., & Yagihashi, S. (1997). Localization in human diabetic peripheral nerve of N(epsilon)-carboxymethyllysine-protein adducts, an advanced glycation endproduct. Diabetologia, 40, 1380–1387.PubMedGoogle Scholar
  18. 18.
    Graham, A. R., & Johnson, P. C. (1985). Direct immunofluorescence findings in peripheral nerve from patients with diabetic neuropathy. Annals of Neurology, 17, 450–454.PubMedGoogle Scholar
  19. 19.
    Obrosova, I. G. (2003). Update on the pathogenesis of diabetic neuropathy. Current Diabetes Reports, 3(6), 439–445.PubMedGoogle Scholar
  20. 20.
    Stevens, M. J., Obrosova, I., Pop-Busui, R., Greene, D. A., & Feldman, E. L. (2002). Pathogenesis of diabetic neuropathy. In D. Porte Jr, R. S. Sherwin, & A. Baron (Eds.), Ellenberg and Rifkin’s diabetes mellitus (pp. 747–770). New York: McGraw Hill.Google Scholar
  21. 21.
    Greene, D. A., Obrosova, I., Stevens, M. J., & Feldman, E. L. (2000). Pathways of glucose-mediated oxidative stress in diabetic neuropathy. In L. Packer, P. Rosen, H. J. Tritschler, G. L. King, & A. Azzi (Eds.), Antioxidants in diabetes management (pp. 111–119). New York: Marcel Dekker Inc.Google Scholar
  22. 22.
    Cameron, N. E., Eaton, S. E., Cotter, M. A., & Tesfaye, S. (2001). Vascular factors and metabolic interactions in the pathogenesis of diabetic neuropathy. Diabetologia, 44(11), 1973–1988.PubMedGoogle Scholar
  23. 23.
    Russell, J. W., Sullivan, K. A., Windebank, A. J., Herrmann, D. N., & Feldman, E. L. (1999). Neurons undergo apoptosis in animal and cell culture models of diabetes. Neurobiology of Disease, 6(5), 347–363.PubMedGoogle Scholar
  24. 24.
    Russell, J. W., Golovoy, D., Vincent, A. M., Mahendru, P., Olzmann, J. A., Mentzer, A., & Feldman, E. L. (2002). High glucose-induced oxidative stress and mitochondrial dysfunction in neurons. FASEB Journal, 16(13), 1738–1748.PubMedGoogle Scholar
  25. 25.
    Schmeichel, A. M., Schmelzer, J. D., & Low, P. A. (2003). Oxidative injury and apoptosis of dorsal root ganglion neurons in chronic experimental diabetic neuropathy. Diabetes, 52(1), 165–171.PubMedGoogle Scholar
  26. 26.
    Apfel, S. C. (1999). Neurotrophic factors and diabetic peripheral neuropathy. European Neurology, 41(Suppl. 1), 27–34.PubMedGoogle Scholar
  27. 27.
    Tomlinson, D. R., Fernyhough, P., & Diemel, L. T. (1997). Role of neurotrophins in diabetic neuropathy and treatment with nerve growth factors. Diabetes, 1997(46), S43–S49.Google Scholar
  28. 28.
    Feldman, E. L., & Windebank, A. J. (1998). Growth factors and peripheral neuropathy. In P. J. Dyck & P. K. Thomas (Eds.), Diabetic neuropathy (pp. 377–386). Philadelphia, PA: W.B. Saunders Co.Google Scholar
  29. 29.
    Polydefkis, M., Griffin, J. W., & McArthur, J. (2003). New insights into diabetic polyneuropathy. JAMA, 290(10), 1371–1376.PubMedGoogle Scholar
  30. 30.
    Apfel, S. C. (1999). Nerve regeneration in diabetic neuropathy. Diabetes, Obesity & Metabolism, 1, 3–11.Google Scholar
  31. 31.
    Vinik, A. I. (1999). Diabetic neuropathy: Pathogenesis and therapy. American Journal of Medicine, 107(2B), 17S–26S.PubMedGoogle Scholar
  32. 32.
    Folmer, V., Soares, J. C., & Rocha, J. B. (2002). Oxidative stress in mice is dependent on the free glucose content of the diet. International Journal of Biochemistry & Cell Biology, 34, 1279–1285.Google Scholar
  33. 33.
    Thornalley, P. J. (2002). Glycation in diabetic neuropathy: Characteristics, consequences, causes, and therapeutic options. International Review of Neurobiology, 50, 37–57.PubMedGoogle Scholar
  34. 34.
    Cameron, N. E., & Cotter, M. A. (1995). Neurovascular dysfunction in diabetic rats. Potential contribution of autoxidation and free radicals examined using transition metal chelating agents. The Journal of Clinical Investigation, 96, 1159–1163.PubMedCentralPubMedGoogle Scholar
  35. 35.
    Singh, R., Barden, A., Mori, T., & Beilin, L. (2001). Advanced glycation end-products: A review. Diabetologia, 44, 129–146.PubMedGoogle Scholar
  36. 36.
    Lander, H. M., Tauras, J. M., Ogiste, J. S., Hori, O., Moss, R. A., & Schmidt, A. M. (1997). Activation of the receptor for advanced glycation end products triggers a p21(ras)-dependent mitogen-activated protein kinase pathway regulated by oxidant stress. Journal of Biological Chemistry, 272, 17810–17814.PubMedGoogle Scholar
  37. 37.
    Wautier, J. L., Wautier, M. P., Schmidt, A. M., Anderson, G. M., Hori, O., Zoukourian, C., et al. (1994). Advanced glycation end products (AGEs) on the surface of diabetic erythrocytes bind to the vessel wall via a specific receptor inducing oxidant stress in the vasculature: A link between surface-associated AGEs and diabetic complications. Proceedings of the National Academy of Sciences of the USA, 91, 7742–7746.PubMedCentralPubMedGoogle Scholar
  38. 38.
    Yan, S. D., Schmidt, A. M., Anderson, G. M., Zhang, J., Brett, J., Zou, Y. S., et al. (1994). Enhanced cellular oxidant stress by the interaction of advanced glycation end products with their receptors/binding proteins. Journal of Biological Chemistry, 269(13), 9889–9897.PubMedGoogle Scholar
  39. 39.
    Wautier, M. P., Chappey, O., Corda, S., Stern, D. M., Schmidt, A. M., & Wautier, J. L. (2001). Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression via RAGE. American Journal of Physiology, 280, E685–E694.PubMedGoogle Scholar
  40. 40.
    Monnier, V. M., Vishwanath, V., Frank, K. E., Elmets, C. A., Dauchot, P., & Kohn, R. R. (1986). Relation between complications of type I diabetes mellitus and collagen-linked fluorescence. New England Journal of Medicine, 314(7), 403–408.PubMedGoogle Scholar
  41. 41.
    Monnier, V. M., Kohn, R. R., & Cerami, A. (1984). Accelerated age-related browning of human collagen in diabetes mellitus. Proceedings of the National Academy of Sciences of the USA, 81(2), 583–587.PubMedCentralPubMedGoogle Scholar
  42. 42.
    Vlassara, H., Brownlee, M., & Cerami, A. (1981). Nonenzymatic glycosylation of peripheral nerve protein in diabetes mellitus. Proceedings of the National Academy of Sciences of the USA, 78(8), 5190–5192.PubMedCentralPubMedGoogle Scholar
  43. 43.
    Vlassara, H., Brownlee, M., & Cerami, A. (1983). Excessive nonenzymatic glycosylation of peripheral and central nervous system myelin components in diabetic rats. Diabetes, 32(7), 670–674.PubMedGoogle Scholar
  44. 44.
    Hicks, M., Delbridge, L., Yue, D. K., & Reeve, T. S. (1988). Catalysis of lipid peroxidation by glucose and glycosylated collagen. Biochemical and Biophysical Research Communications, 151(2), 649–655.PubMedGoogle Scholar
  45. 45.
    Bucala, R., Tracey, K. J., & Cerami, A. (1991). Advanced glycosylation products quench nitric oxide and mediate defective endothelium-dependent vasodilatation in experimental diabetes. The Journal of Clinical Investigation, 87(2), 432–438.PubMedCentralPubMedGoogle Scholar
  46. 46.
    Simpson, J. A., Narita, S., Gieseg, S., Gebicki, S., Gebicki, J. M., & Dean, R. T. (1992). Long-lived reactive species on free-radical-damaged proteins. Biochemical Journal, 282(Pt 3), 621–624.PubMedCentralPubMedGoogle Scholar
  47. 47.
    Brownlee, M., Vlassara, H., & Cerami, A. (1984). Nonenzymatic glycosylation and the pathogenesis of diabetic complications. Annals of Internal Medicine, 101(4), 527–537.PubMedGoogle Scholar
  48. 48.
    Mullarkey, C. J., Edelstein, D., & Brownlee, M. (1990). Free radical generation by early glycation products: A mechanism for accelerated atherogenesis in diabetes. Biochemical and Biophysical Research Communications, 173(3), 932–939.PubMedGoogle Scholar
  49. 49.
    Chistiakov, D. A., Zotova, E. V., Savost’anov, K. V., Bursa, T. R., Galeev, I. V., Strokov, I. A., & Nosikov, V. V. (2006). The 262T > C promoter polymorphism of the catalase gene is associated with diabetic neuropathy in type 1 diabetic Russian patients. Diabetes & Metabolism, 32(1), 63–68.Google Scholar
  50. 50.
    Hermenegildo, C., Raya, A., Roma, J., & Romero, F. J. (1993). Decreased glutathione peroxidase activity in sciatic nerve of alloxan-induced diabetic mice and its correlation with blood glucose levels. Neurochemical Research, 18, 893–896.PubMedGoogle Scholar
  51. 51.
    Van Dam, P. S., van Asbeck, B. S., Bravenboer, B., van Oirschot, J. F. L. M., Gispen, W. H., & Marx, J. J. M. (1998). Nerve function and oxidative stress in diabetic and vitamin E-deficient rats. Free Radical Biology and Medicine, 24, 18–26.PubMedGoogle Scholar
  52. 52.
    Martin-Gallan, P., Carrascosa, A., Gussinye, M., & Dominguez, C. (2003). Biomarkers of diabetes-associated oxidative stress and antioxidant status in young diabetic patients with or without subclinical complications. Free Radical Biology and Medicine, 34, 1563–1574.PubMedGoogle Scholar
  53. 53.
    Merzouk, S., Hichami, A., Madani, S., Merzouk, H., Berrouiguet, A. Y., Prost, J., et al. (2003). Antioxidant status and levels of different vitamins determined by high performance liquid chromatography in diabetic subjects with multiple complications. General Physiology and Biophysics, 22(1), 15–27.PubMedGoogle Scholar
  54. 54.
    Yan, H., & Harding, J. J. (1997). Glycation-induced inactivation and loss of antigenicity of catalase and superoxide dismutase. Biochemical Journal, 328, 599–605.PubMedCentralPubMedGoogle Scholar
  55. 55.
    Morgan, P. E., Dean, R. T., & Davies, M. J. (2002). Inactivation of cellular enzymes by carbonyls and protein-bound glycation/glycoxidation products. Archives of Biochemistry and Biophysics, 403, 259–269.PubMedGoogle Scholar
  56. 56.
    Requena, J. R., Fu, M. X., Ahmed, M. U., Jenkins, A. J., Lyons, T. J., Baynes, J. W., & Thorpe, S. R. (1997). Quantification of malondialdehyde and 4-hydroxynonenal adducts to lysine residues in native and oxidized human low-density lipoprotein. Biochemical Journal, 322(Pt 1), 317–325.PubMedCentralPubMedGoogle Scholar
  57. 57.
    Thornalley, P. J. (1985). Monosaccharide autoxidation in health and disease. Environmental Health Perspectives, 64, 297–307.PubMedCentralPubMedGoogle Scholar
  58. 58.
    Expert Committee on the Diagnosis and Classification of Diabetes Mellitus.Google Scholar
  59. 59.
    (2003). Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care, 26(suppl 1), S5–S20.Google Scholar
  60. 60.
    Statement, Consensus. (1988). Report and recommendations of the San Antonio on diabetic neuropathy. American Diabetes Association American Academy of Neurology. Diabetes Care, 11, 592–597.Google Scholar
  61. 61.
    Bentler, E., Duron, O., & Kelly, B. M. (1963). Improved method for the determination of blood glutathione. Journal of Laboratory and Clinical Medicine, 61, 882–888.Google Scholar
  62. 62.
    Bentler, E. (Ed.). (1975). Red cell metabolism. A manual of biochemical methods. New York: Grune & Stratton.Google Scholar
  63. 63.
    Folsberg, E., de Faire, U., & Morgenstern, R. (1999). Low yield of polymorphisms from EST Blast searching: Analysis of genes related to oxidative stress and verification of the P197L polymorphism in GPX1. Human Mutation, 13, 294–300.Google Scholar
  64. 64.
    Folsberg, L., Lyrenas, L., de Faire, U., & Morgenstern, R. (2001). A common functional C-T substitution polymorphisms in the promoter region of the human catalase gene influences transcription factor binding, reported gene transcription and is correlated to blood catalase levels. Free Radical Biology and Medicine, 30, 500–505.Google Scholar
  65. 65.
    Thorpe, S. R., & Baynes, J. W. (2003). Maillard reaction products in tissue proteins: New products and new perspectives. Amino Acids, 25(3–4), 275–281. Epub 2003 Jul 29.PubMedGoogle Scholar
  66. 66.
    Bourajjaj, M., Stehouwer, C. D., van Hinsbergh, V. W., & Schalkwijk, C. G. (2003). Role of methylglyoxal adducts in the development of vascular complications in diabetes mellitus. Biochemical Society Transactions, 31(Pt 6), 1400–1402.PubMedGoogle Scholar
  67. 67.
    Thornalley, P. J. (1993). The glyoxalase system in health and disease. Molecular Aspects of Medicine, 14(4), 287–371.PubMedGoogle Scholar
  68. 68.
    Lo, T. W., Westwood, M. E., McLellan, A. C., Selwood, T., & Thornalley, P. J. (1994). Binding and modification of proteins by methylglyoxal under physiological conditions. A kinetic and mechanistic study with N alpha-acetylarginine, N alpha-acetylcysteine, and N alpha-acetyllysine, and bovine serum albumin. Journal of Biological Chemistry, 269(51), 32299–32305.PubMedGoogle Scholar
  69. 69.
    Suji, G., & Sivakami, S. (2007). DNA damage during glycation of lysine by methylglyoxal: Assessment of vitamins in preventing damage. Amino Acids, 33(4), 615–621. Epub 2007 Feb 16.PubMedGoogle Scholar
  70. 70.
    Yim, H. S., Kang, S. O., Hah, Y. C., Chock, P. B., & Yim, M. B. (1995). Free radicals generated during the glycation reaction of amino acids by methylglyoxal. A model study of protein-cross-linked free radicals. Journal of Biological Chemistry, 270(47), 28228–28233.PubMedGoogle Scholar
  71. 71.
    Shumaev, K. B., Gubkina, S. A., Kumskova, E. M., Shepelkova, G. S., Ruuge, E. K., & Lankin, V. Z. (2009). Superoxide formation as a result of interaction of l-lysine with dicarbonyl compounds and its possible mechanism. Biochemistry (Mosc), 74(4), 461–466.Google Scholar
  72. 72.
    McLaughlin, J. A., Pethig, R., & Szent-Györgyi, A. (1980). Spectroscopic studies of the protein-methylglyoxal adduct. Proceedings of the National Academy of Sciences of the USA, 77(2), 949–951.PubMedCentralPubMedGoogle Scholar
  73. 73.
    Tarpey, M. M., Wink, D. A., & Grisham, M. B. (2004). Methods for detection of reactive metabolites of oxygen and nitrogen: In vitro and in vivo considerations. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 286(3), R431–R444.PubMedGoogle Scholar
  74. 74.
    Bisby, R. H., & Parker, A. W. (1991). Reactions of the alpha-tocopheroxyl radical in micellar solutions studied by nanosecond laser flash photolysis. FEBS Letters, 290(1–2), 205–208.PubMedGoogle Scholar
  75. 75.
    Fernyhough, P., & Jonathan, M. (2014). Mechanisms of disease: Mitrochondrial dysfunction in sensory neuropathy and other complications in diabetes. Handbook of Clinical Neurology, 126, 353–377.Google Scholar
  76. 76.
    Choi, J., Chandrasekaran, K., Inoue, T., Muragundla, A., Russell, J. W. (2014). PGC-1α regulation of mitochondrial degeneration in experimental diabetic neuropathy. Neurobiology of Disease, 64, 118–130.Google Scholar
  77. 77.
    Mizisin, A. P. (2014). Mechanisms of diabetic neuropathy: Schwann cells. Handbook of Clinical Neurology, 126, 401–428.Google Scholar
  78. 78.
    Xie, Z. X., Xia, S. F., Qiao, Y., Shi, Y. H., & Le, G. W. (2014). Effect of GABA on oxidative stress in the skeletal muscles and plasma free amino acids in mice fed high-fat diet. Journal of Animal Physiology and Animal Nutrition. doi: 10.1111/jpn.12254.
  79. 79.
    Tsai, E. C., Hirsch, I. B., Brunzell, J. D., & Chait, A. (1994). Reduced plasma peroxyl radical trapping capacity and increased susceptibility of LDL to oxidation in poorly controlled IDDM. Diabetes, 43, 1010–1014.PubMedGoogle Scholar
  80. 80.
    Altomare, E., Vendemiale, G., Chicco, D., Procacci, V., & Cirelli, F. (1992). Increased lipid peroxidation in type 2 poorly controlled diabetic patients. Diabete et Metabolisme, 18, 264–271.PubMedGoogle Scholar
  81. 81.
    Zaltzberg, H., Kanter, Y., Aviram, M., & Levy, Y. (1999). Increased plasma oxidizability and decreased erythrocyte and plasma antioxidative capacity in patients with NIDDM. The Israel Medical Association Journal, 1, 228–231.PubMedGoogle Scholar
  82. 82.
    Sundaram, R. K., Bhaskar, A., Vijayalingam, S., Viswanathan, M., Mohan, R., & Shanmugasundaram, K. R. (1996). Antioxidant status and lipid peroxidation in type II diabetes mellitus with and without complications. Clinical Science (Lond), 90, 255–260.Google Scholar
  83. 83.
    Elhadd, T. A., Kennedy, G., Hill, A., McLaren, M., Newton, R. W., Greene, S. A., & Belch, J. J. (1999). Abnormal markers of endothelial cell activation and oxidative stress in children, adolescents and young adults with type 1 diabetes with no clinical vascular disease. Diabetes/Metabolism Research and Reviews, 15, 405–411.PubMedGoogle Scholar
  84. 84.
    Marra, G., Cotroneo, P., Pitocco, D., Manto, A., Di Leo, M. A., Ruotolo, V., et al. (2002). Early increase of oxidative stress and reduced antioxidant defenses in patients with uncomplicated type 1 diabetes: A case for gender difference. Diabetes Care, 25, 370–375.PubMedGoogle Scholar
  85. 85.
    Obrosova, I. G. (2009). Diabetic painful and insensate neuropathy: Pathogenesis and potential treatments. Neurotherapeutics, 6(4), 638–647.PubMedGoogle Scholar
  86. 86.
    Reynolds, T. M. (1963). Chemistry of nonenzymic browning. I. The reaction between aldoses and amines. Advances in Food Research, 12, 1–52.PubMedGoogle Scholar
  87. 87.
    Reynolds, T. M. (1965). Chemistry of nonenzymic browning. II. Advances in Food Research, 14, 167–283.PubMedGoogle Scholar
  88. 88.
    Kato, H., Hayase, F., Shin, D. B., Oimomi, M., & Baba, S. (1989). 3-Deoxyglucosone, an intermediate product of the Maillard reaction. Progress in Clinical and Biological Research, 304, 69–84.PubMedGoogle Scholar
  89. 89.
    Sell, D. R., & Monnier, V. M. (1989). Structure elucidation of a senescence cross-link from human extracellular matrix. Implication of pentoses in the aging process. Journal of Biological Chemistry, 264(36), 21597–21602.PubMedGoogle Scholar
  90. 90.
    Sell, D. R., & Monnier, V. M. (1990). End-stage renal disease and diabetes catalyze the formation of a pentose-derived crosslink from aging human collagen. The Journal of Clinical Investigation, 85(2), 380–384.PubMedCentralPubMedGoogle Scholar
  91. 91.
    Grandhee, S. K., & Monnier, V. M. (1991). Mechanism of formation of the Maillard protein cross-link pentosidine. Glucose, fructose, and ascorbate as pentosidine precursors. Journal of Biological Chemistry, 266(18), 11649–11653.PubMedGoogle Scholar
  92. 92.
    Sell, D. R., Nagaraj, R. H., Grandhee, S. K., Odetti, P., Lapolla, A., Fogarty, J., & Monnier, V. M. (1991). Pentosidine: A molecular marker for the cumulative damage to proteins in diabetes, aging, and uremia. Diabetes/Metabolism Reviews, 7(4), 239–251.PubMedGoogle Scholar
  93. 93.
    Dyer, D. G., Blackledge, J. A., Thorpe, S. R., & Baynes, J. W. (1991). Formation of pentosidine during nonenzymatic browning of proteins by glucose. Identification of glucose and other carbohydrates as possible precursors of pentosidine in vivo. Journal of Biological Chemistry, 266(18), 11654–11660.PubMedGoogle Scholar
  94. 94.
    Miyata, S., & Monnier, V. (1992). Immunohistochemical detection of advanced glycosylation end products in diabetic tissues using monoclonal antibody to pyrraline. The Journal of Clinical Investigation, 89(4), 1102–1112.PubMedCentralPubMedGoogle Scholar
  95. 95.
    Namiki, M., Hayashi, T., & Ohta, Y. (1977). Novel free radicals formed by the amino-carbonyl reactions of sugars with amino acids, amines, and proteins. Advances in Experimental Medicine and Biology, 86B, 471–501.PubMedGoogle Scholar
  96. 96.
    Hayashi, T., Ohta, Y., & Namiki, M. (1977). Electron spin resonance spectral study on the structure of the novel free radical products formed by the reactions of sugars with amino acids or amines. Journal of Agriculture and Food Chemistry, 25(6), 1282–1287.Google Scholar
  97. 97.
    Ahmed, M. U., Thorpe, S. R., & Baynes, J. W. (1986). Identification of N epsilon-carboxymethyllysine as a degradation product of fructoselysine in glycated protein. Journal of Biological Chemistry, 261(11), 4889–4894.PubMedGoogle Scholar
  98. 98.
    Baynes, J. W. (1991). Role of oxidative stress in development of complications in diabetes. Diabetes, 40(4), 405–412.PubMedGoogle Scholar
  99. 99.
    Dunn, J. A., Ahmed, M. U., Murtiashaw, M. H., Richardson, J. M., Walla, M. D., Thorpe, S. R., & Baynes, J. W. (1990). Reaction of ascorbate with lysine and protein under autoxidizing conditions: Formation of N epsilon-(carboxymethyl)lysine by reaction between lysine and products of autoxidation of ascorbate. Biochemistry, 29(49), 10964–10970.PubMedGoogle Scholar
  100. 100.
    Dunn, J. A., Patrick, J. S., Thorpe, S. R., & Baynes, J. W. (1989). Oxidation of glycated proteins: Age-dependent accumulation of N epsilon-(carboxymethyl)lysine in lens proteins. Biochemistry, 28(24), 9464–9468.PubMedGoogle Scholar
  101. 101.
    Dyer, D. G., Dunn, J. A., Thorpe, S. R., Bailie, K. E., Lyons, T. J., McCance, D. R., & Baynes, J. W. (1993). Accumulation of Maillard reaction products in skin collagen in diabetes and aging. The Journal of Clinical Investigation, 91(6), 2463–2469.PubMedCentralPubMedGoogle Scholar
  102. 102.
    Thornalley, P., Wolff, S., Crabbe, J., & Stern, A. (1984). The autoxidation of glyceraldehyde and other simple monosaccharides under physiological conditions catalysed by buffer ions. Biochimica et Biophysica Acta, 797(2), 276–287.PubMedGoogle Scholar
  103. 103.
    Jiang, Z. Y., Woollard, A. C., & Wolff, S. P. (1990). Hydrogen peroxide production during experimental protein glycation. FEBS Letters, 268(1), 69–71.PubMedGoogle Scholar
  104. 104.
    Hunt, J. V., Dean, R. T., & Wolff, S. P. (1988). Hydroxyl radical production and autoxidative glycosylation. Glucose autoxidation as the cause of protein damage in the experimental glycation model of diabetes mellitus and ageing. Biochemical Journal, 256(1), 205–212.PubMedCentralPubMedGoogle Scholar
  105. 105.
    Hunt, J. V., Smith, C. C., & Wolff, S. P. (1990). Autoxidative glycosylation and possible involvement of peroxides and free radicals in LDL modification by glucose. Diabetes, 39(11), 1420–1424.PubMedGoogle Scholar
  106. 106.
    Wolff, S. P., & Dean, R. T. (1987). Glucose autoxidation and protein modification. The potential role of ‘autoxidative glycosylation’ in diabetes. Biochemical Journal, 245, 243–250.PubMedCentralPubMedGoogle Scholar
  107. 107.
    Babizhayev, M. A., Guiotto, A., & Kasus-Jacobi, A. (2009). N-Acetylcarnosine and histidyl-hydrazide are potent agents for multitargeted ophthalmic therapy of senile cataracts and diabetic ocular complications. Journal of Drug Targeting, 17(1), 36–63.PubMedGoogle Scholar
  108. 108.
    Thornalley, P. J., McLellan, A. C., Lo, T. W., Benn, J., & Sönksen, P. H. (1996). Negative association between erythrocyte reduced glutathione concentration and diabetic complications. Clinical Science (Lond)., 91(5), 575–582.PubMedGoogle Scholar
  109. 109.
    Honma, H., Podratz, J. L., & Windebank, A. J. (2003). Acute glucose deprivation leads to apoptosis in a cell model of acute diabetic neuropathy. Journal of the Peripheral Nervous System, 8, 65–74.PubMedGoogle Scholar
  110. 110.
    Ceriello, A., dello Russo, P., Amstad, P., & Cerutti, P. (1996). High glucose induces antioxidant enzymes in human endothelial cells in culture. Evidence linking hyperglycemia and oxidative stress. Diabetes, 45(4), 471–477.PubMedGoogle Scholar
  111. 111.
    Ceriello, A., Bortolotti, N., Falleti, E., Taboga, C., Tonutti, L., Crescentini, A., et al. (1997). Total radical-trapping antioxidant parameter in NIDDM patients. Diabetes Care, 20(2), 194–197.PubMedGoogle Scholar
  112. 112.
    Carolo dos Santos, K., Pereira Braga, C., Octavio Barbanera, P., Seiya, F. R., Fernandes Junior, A., & Fernandes, A. A. (2014). Cardiac energy metabolism and oxidative stress biomakers in diabetic rat treated with resveratrol. PLoS One, 9(7), e102775.Google Scholar
  113. 113.
    Maxwell, S. R., Thomason, H., Sandler, D., Leguen, C., Baxter, M. A., Thorpe, G. H., et al. (1997). Antioxidant status in patients with uncomplicated insulin-dependent and non-insulin-dependent diabetes mellitus. European Journal of Clinical Investigation, 27, 484–490.PubMedGoogle Scholar
  114. 114.
    Maxwell, S. R., Thomason, H., Sandler, D., Leguen, C., Baxter, M. A., Thorpe, G. H., et al. (1997). Poor glycaemic control is associated with reduced serum free radical scavenging (antioxidant) activity in non-insulin-dependent diabetes mellitus. Annals of Clinical Biochemistry, 34, 638–644.PubMedGoogle Scholar
  115. 115.
    van Dam, P. S., van Asbeck, B. S., Bravenboer, B., van Oirschot, J. F., Gispen, W. H., & Marx, J. J. (1998). Nerve function and oxidative stress in diabetic and vitamin E-deficient rats. Free Radical Biology and Medicine, 24(1), 18–26.PubMedGoogle Scholar
  116. 116.
    Chen, C. L., Liu, Q., & Relling, M. V. (1996). Simultaneous characterization of glutathione S-transferase M1 and T1 polymorphisms by polymerase chain reaction in American whites and blacks. Pharmacogenetics., 6(2), 187–191.PubMedGoogle Scholar
  117. 117.
    Iwata-Ichikawa, E., Kondo, Y., Miyazaki, I., Asanuma, M., & Ogawa, N. (1999). Glial cells protect neurons against oxidative stress via transcriptional up-regulation of the glutathione synthesis. Journal of Neurochemistry, 72(6), 2334–2344.PubMedGoogle Scholar
  118. 118.
    Ahmed, F. N., Naqvi, F. N., & Shafiq, F. (2006). Lipid peroxidation and serum antioxidant enzymes in patients with type 2 diabetes mellitus. Annals of the New York Academy of Sciences, 1084, 481–489.PubMedGoogle Scholar
  119. 119.
    Dickinson, P. J., Carrington, A. L., Frost, G. S., & Boulton, A. J. (2002). Neurovascular disease, antioxidants and glycation in diabetes. Diabetes/Metabolism Research and Reviews, 18(4), 260–272.PubMedGoogle Scholar
  120. 120.
    Seidegård, J., Vorachek, W. R., Pero, R. W., & Pearson, W. R. (1988). Hereditary differences in the expression of the human glutathione transferase active on trans-stilbene oxide are due to a gene deletion. Proceeding of the National Academy of Sciences of the USA, 85(19), 7293–7297.Google Scholar
  121. 121.
    Negi, G., Kumar, A., & Sharma, S. S. (2008). Oxidative stress in the pathophysiology of diabetic neuropathy: Mechanisms to management. Current Research & Information on Pharmaceutical Sciences, 9(4), 62–68.Google Scholar
  122. 122.
    Babizhayev, M. A., & Yegorov, Y. E. (2010). Therapeutic uses of drug-carrier systems for imidazole-containing dipeptide compounds that act as pharmacological chaperones and have significant impact on the treatment of chronic diseases associated with increased oxidative stress and the formation of advanced glycation end products. Critical Reviews in Therapeutic Drug Carrier Systems, 27(2), 85–154.PubMedGoogle Scholar
  123. 123.
    Babizhayev, M. A., & Yegorov, Y. E. (2010). Advanced drug delivery of N-acetylcarnosine (N-acetyl-beta-alanyl-l-histidine), carcinine (beta-alanylhistamine) and l-carnosine (beta-alanyl-l-histidine) in targeting peptide compounds as pharmacological chaperones for use in tissue engineering, human disease management and therapy: From in vitro to the clinic. Recent Patents on Drug Delivery & Formulation, 4(3), 198–230.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Mark A. Babizhayev
    • 1
    • 2
    • 8
    Email author
  • Igor A. Strokov
    • 4
  • Valery V. Nosikov
    • 3
  • Ekaterina L. Savel’yeva
    • 5
  • Vladimir F. Sitnikov
    • 5
  • Yegor E. Yegorov
    • 6
    • 9
  • Vadim Z. Lankin
    • 7
  1. 1.Innovative Vision Products, Inc.County of New CastleUSA
  2. 2.Moscow Helmholtz Research Institute of Eye DiseasesMoscowRussian Federation
  3. 3.Department of Molecular DiagnosticsNational Research Centre GosNIIgenetikaMoscowRussian Federation
  4. 4.Department of NeurologyI. M. Sechenov Medical AcademyMoscowRussia
  5. 5.Russian State Medical UniversityMoscowRussian Federation
  6. 6.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussian Federation
  7. 7.Russian Cardiology Research CenterMoscowRussia
  8. 8.Innovative Vision Products, Inc.MoscowRussian Federation
  9. 9.Moscow Institute of Physics and TechnologyDolgoprudny, MoscowRussian Federation

Personalised recommendations