Cell Biochemistry and Biophysics

, Volume 71, Issue 2, pp 1199–1206 | Cite as

The Surfactant-Induced Conformational and Activity Alterations in Rhizopus niveus Lipase

  • Parvez Alam
  • Gulam Rabbani
  • Gamal Badr
  • Badr Mohamed Badr
  • Rizwan Hasan KhanEmail author
Original Paper


In this study, we have reported the effect of nonionic, anionic, cationic, and zwitterionic detergents on the enzymatic activity and structural stability of Rhizopus niveus lipase. Secondary structural changes were monitored by Far-UV CD which shows that surfactant induces helicity in the Rhizopus niveus lipase protein which was maximum in case of CTAB followed by SDS, CHAPS, and Brij-35. Similarly, tertiary structural changes were monitored by tryptophan fluorescence. We also carried out enzyme kinetics assays which showed that activity was enhanced by 1.5- and 1.1-fold in the presence of CHAPS and Brij-35, respectively. Furthermore, there was a decline in activity by 20 and 30 % in case of SDS and CTAB, respectively. These studies may be helpful in understanding detergent–lipase interaction in greater detail as lipases are used in many industrial processes.


Rhizopus niveus lipase ANS Fluorescence intensity Mean residual ellipticity 



Authors are thankful for the financial support from Council for Scientific and Industrial Research (PA is recipient of CSIR-JRF and GR is recipient of CSIR-SRF), New Delhi and the Central facility of Interdisciplinary Biotechnology Unit, AMU Aligarh.


  1. 1.
    Bhardwaj, K., Raju, A., & Rajasekharan, R. (2000). Identification, purification and characterization of thermally stable lipase from rice bran, a new member of the (phospho) lipase family. Plant Physiology, 127, 1728–1738.CrossRefGoogle Scholar
  2. 2.
    Carrière, F., Thirstrup, K., Hjorth, S., & Boel, E. (1994). Cloning of the classical guinea pig pancreatic lipase and comparison with lipase related protein 2. FEBS Letters, 338, 63–68.PubMedCrossRefGoogle Scholar
  3. 3.
    Olempska-Beer, Z. S., Merker, R. I., Ditto, M. D., & DiNovi, M. J. (2006). Food processing enzymes from recombinant microorganism: A review. Regulatory Toxicology and Pharmacology, 45, 144–158.PubMedCrossRefGoogle Scholar
  4. 4.
    Hasan, F., Shah, A. A., & Hameed, A. (2006). Industrial applications of microbial lipases. Enzyme and Microbial Technology, 39, 235–251.CrossRefGoogle Scholar
  5. 5.
    Rahman, R. N., Baharum, S. N., Basri, M., & Salleh, A. B. (2005). High-yielding purification of an organic solvent-tolerant lipase from Pseudomonas sp. Analytical Biochemistry, 341, 267–274.PubMedCrossRefGoogle Scholar
  6. 6.
    Villeneuve, P., & Foglia, T. (1997). Lipase specificities: Potential applications in lipid bioconversions. Inform, 8, 640–650.Google Scholar
  7. 7.
    Saxena, R. K., Sheoran, A., Giri, B., & Davidson, W. S. (2003). Purification strategies for microbial lipases. Journal of Microbiol Methods, 52, 1–18.CrossRefGoogle Scholar
  8. 8.
    Li, H., & Zhang, X. (2005). Characterization of thermostable lipase from thermophilic Geobacillus sp. TW1. Protein Expression and Purification, 42, 153–159.PubMedCrossRefGoogle Scholar
  9. 9.
    Ollis, D. L., Cheah, E., Cygler, M., Dijkstra, B., Frolow, F., Franken, S. M., et al. (1992). The alpha/beta hydrolase fold. Protein Engineering, 5, 197–211.PubMedCrossRefGoogle Scholar
  10. 10.
    Svendsen, A. (2000). Lipase protein engineering. Biochimica et Biophysica Acta, 1543, 223–238.PubMedCrossRefGoogle Scholar
  11. 11.
    Beer, H. D., McCathy, J. E., Borncheuer, U. T., & Schmidit, R. D. (1998). Cloning, expression, characterization and role of leader sequence of lipase from Rhizopusoryzae. Biochimica et Biophysica Acta, 1399, 173–180.PubMedCrossRefGoogle Scholar
  12. 12.
    Kohno, M., Kugimiya, W., Hashimoto, Y., & Morita, Y. (1994). Purification, characterization and crystallisation of two types of lipase from Rhizopus niveus. Bioscience, Biotechnology, and Biochemistry, 58, 1007–1012.PubMedCrossRefGoogle Scholar
  13. 13.
    Ben, Salah A., Sayarri, A., Verger, R., & Gargouri, Y. (2001). Kinetic study of Rhizopusoryzae using monomolecular film technique. Biochemie, 83, 463–493.CrossRefGoogle Scholar
  14. 14.
    Reis, P., Holmberg, K., Watzke, H., Leser, M. E., & Miller, R. (2009). Lipases at interfaces: A review. Advances in Colloid and Interface Science, 148, 237–250.CrossRefGoogle Scholar
  15. 15.
    Borgstrom, B., & Donnér, J. (1976). Interaction of pancreatic lipase with bile salts and dodecyl sulphate. Lipid Research, 17, 491–507.Google Scholar
  16. 16.
    Cherif, S., Mnif, S., Hadrich, F., Abdelkafi, F., & Sayadi, S. (2011). A newly highly alkaline lipase: An ideal choice for application in detergent formulations. Lipids in Health and Disease, 10, 221.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Chen, Y. H., Yang, J. T., & Martinez, H. (1972). Determination of the secondary structures of proteins by circular dichroism and optical rotator dispersion. Biochemistry, 11, 4120–4131.PubMedCrossRefGoogle Scholar
  18. 18.
    Andrade, M. A., Chacón, P., Merelo, J. J., & Morán, F. (1993). Evaluation of secondary structure of proteins from UV circular dichroism spectra using an unsurprised learning neural network. Protein Engineering, 6, 383–390.PubMedCrossRefGoogle Scholar
  19. 19.
    Naeem, A., Fatima, S., & Khan, R. H. (2006). Characterization of partially folded intermediates of papain in presence of cationic, anionic and nonionic detergents at low pH. Biopolymers, 83(1), 1–10.PubMedCrossRefGoogle Scholar
  20. 20.
    Lakowicz, J. R. (1992). Topics in fluorescence spectroscopy: Biological applications (Vol. 3, pp. 289–343). New York: Plenum Press.Google Scholar
  21. 21.
    Gasymov, O. K., & Glasgow, B. J. (2007). ANS fluorescence: potential to augment the identification of the external binding sites of proteins. Biochimica et Biophysica Acta, 1774, 403–411.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Ptisyn, O. B. (1992). The molten globule State. In T. E. Creighton (Ed.), Protein folding (pp. 243–300). New York: W. H. freeman.Google Scholar
  23. 23.
    Mogensen, J. E., Sehgal, P., & Otzen, D. E. (2005). Activation, inhibition and destabilization of Thermomyceslanuginosus lipase by detergents. Biochemistry, 44, 1719–1730.PubMedCrossRefGoogle Scholar
  24. 24.
    Andreas, B., Tobias, R., Matthias, H., Winfried, H., Jochen, B., & Marion, A. S. (2005). pH optima in lipase catalysed esterification. Biocatalysis and Biotransformation, 23, 307–314.CrossRefGoogle Scholar
  25. 25.
    Paiva, A. L., Balca, V. M., & Malacta, F. X. (2000). Kinetics and mechanism of reactions catalysed by immobilized lipases. Enzyme and Microbial Technology, 27, 187–204.PubMedCrossRefGoogle Scholar
  26. 26.
    Martinell, M., Holmquist, M., & Hulk, K. (1995). On the interfacial activation of Candida Antarctica lipase A and B as compared with Humicola lanuginosa lipase. Biochimica et Biophysica Acta, 1258, 272–276.CrossRefGoogle Scholar
  27. 27.
    Hermoso, J., Pignol, D., Kerfelec, B., Crenon, I., Chapus, C., & Fontecilla-Camps, J.-C. (1996). Lipase activation by non-ionic detergents, The crystal structure of the porcine lipase–colipasetetraethylene glycol monooctyl ether complex. Protein Journal of Biological Chemistry, 271, 8007–80016.Google Scholar
  28. 28.
    Antonov, V. K., Dyakov, V. L., Mishin, A. A., & Rotanovo, T. V. (1998). Catalytic activity and association of pancreatic lipase. Biochimie, 70, 1235–1244.CrossRefGoogle Scholar
  29. 29.
    Ruiz, C., Falcocchio, S., Xoxi, E., Pastor, F. I., Diaz, P., & Saso, L. (2004). Activation and inhibition of Candida rugosa and Bacillus- related lipases by saturated fatty acids evaluated by new calorimetric microassay. Biochimica et Biophysica Acta, 1672, 184–191.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Parvez Alam
    • 1
  • Gulam Rabbani
    • 1
  • Gamal Badr
    • 2
  • Badr Mohamed Badr
    • 3
  • Rizwan Hasan Khan
    • 1
    Email author
  1. 1.Interdisciplinary Biotechnology UnitAligarh Muslim UniversityAligarhIndia
  2. 2.Laboratory of Immunology and Molecular Biology, Zoology Department, Faculty of ScienceAssiut UniversityAssiutEgypt
  3. 3.Radiation Biology DepartmentNational Centre for Radiation Research and Technology (NCRRT)CairoEgypt

Personalised recommendations