Skip to main content

Advertisement

Log in

A Simple and Efficient Method for Breast Cancer Diagnosis Based on Infrared Thermal Imaging

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

This study aims to evaluate the feasibility and efficacy of quantitative diagnosis through thermal analysis of abnormal metabolism. In this paper, an analytical-based steady-state solution for the thermal inverse problem was developed, considering an equivalent point heat source embedded in the tissue. Based on this solution, we developed a simple and efficient algorithm that generates solutions for the nonlinear heat conduction model. Using the nonlinear fitting analysis, a regular distribution can be derived from the raw thermal patterns of the skin surface above the tumor, and the power and depth of the equivalent heat source can be derived to investigate whether the tumor is malignant or benign. The thermal power Q of internal heat source was estimated to predict the satisfactory approaches to distinguish between benign and malignant tumors. The results of four clinical cases (female patients with malignant tumor and benign tumor) show that the estimated values of the power of the heat sources in malignant cases (fatty: Q = 0.34851 W; dense: Q = 0.46933 W) are both far greater than the ones in benign (fatty: Q = 0.04721 W; dense: Q = 0.07717 W), irregardless of the breast density. The correlation coefficients (R 2) of the nonlinear curve fittings are all above 0.98. The new thermal method proposed in this study would help to improve the preciseness of diagnosis on breast masses (malignant or benign).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Siegel, R., Naishadham, D., & Jemal, A. (2013). Cancer statistics, 2013. CA: A Cancer Journal for Clinicians, 63, 11–30.

    Google Scholar 

  2. Bezic, J., Mrklic, I., Pogorelic, Z., & Tomic, S. (2013). Mammographic screening has failed to improve pathohistological characteristics of breast cancers in split region of croatia. Breast Disease, 34, 47–51.

    PubMed  Google Scholar 

  3. Anbar, M. (1998). Clinical thermal imaging today. IEEE Engineering in Medicine and Biology Magazine, 17, 25–33.

    Article  CAS  PubMed  Google Scholar 

  4. Gautherie, M. (1980). Thermopathology of breast cancer: Measurement and analysis of in vivo temperature and blood flow. Annals of the New York Academy of Sciences, 335, 383–415.

    Article  CAS  PubMed  Google Scholar 

  5. Jones, B. F., & Plassmann, P. (2002). Digital infrared thermal imaging of human skin. IEEE Engineering in Medicine and Biology Magazine, 21, 41–48.

    Article  CAS  PubMed  Google Scholar 

  6. Aupperlee, M., Kariagina, A., Osuch, J., & Haslam, S. Z. (2005). Progestins and breast cancer. Breast Disease, 24, 37–57.

    CAS  PubMed  Google Scholar 

  7. AbdullGaffar, B., Ghazi, E., Mohamed, E., & Hamza, D. (2012). Breast metaplastic carcinoma with unusual small cell component. Breast Disease, 34, 19–24.

    CAS  PubMed  Google Scholar 

  8. Anderson, W. F., Schairer, C., Chen, B. E., Hance, K. W., & Levine, P. H. (2005). Epidemiology of inflammatory breast cancer (IBC). Breast Disease, 22, 9–23.

    PubMed Central  PubMed  Google Scholar 

  9. Absalan, H., SalmanOgli, A., Rostami, R., & Maghoul, A. (2012). Simulation and investigation of quantum dot effects as internal heat-generator source in breast tumor site. Journal of Thermal Biology, 37, 490–495.

    Article  Google Scholar 

  10. Gescheit, I. M., Dayan, A., Ben-David, M., & Gannot, I. (2010). Minimal-invasive thermal imaging of a malignant tumor: A simple model and algorithm. Medical Physics, 37, 211–216.

    Article  PubMed  Google Scholar 

  11. Jemal, A., Murray, T., Ward, E., Samuels, A., Tiwari, R. C., Ghafoor, A., et al. (2005). Cancer statistics, 2005. CA: A Cancer Journal for Clinicians, 55, 10–30.

    Google Scholar 

  12. Aksel, E. M., & Mikhailov, E. A. (2005). Morbidity statistics of breast cancer in Moscow. Voprosy Onkologii, 51, 656–658.

    CAS  PubMed  Google Scholar 

  13. Allan, A. L., Vantyghem, S. A., Tuck, A. B., & Chambers, A. F. (2006). Tumor dormancy and cancer stem cells: Implications for the biology and treatment of breast cancer metastasis. Breast Disease, 26, 87–98.

    CAS  PubMed  Google Scholar 

  14. Alroy, I., & Yarden, Y. (2000). Biochemistry of HER2 oncogenesis in breast cancer. Breast disease, 11, 31–48.

    CAS  PubMed  Google Scholar 

  15. Brown, K. L., Moglia, D. M., & Grumet, S. (2006). Genetic counseling for breast cancer risk: General concepts, challenging themes and future directions. Breast disease, 27, 69–96.

    PubMed  Google Scholar 

  16. Chandrasekar, S., Rathi, C. G. P., & Aggarwal, R. (2010). Organophosphate poisoning presenting as acute respiratory distress. Indian Journal of Pediatrics, 77, 1195–1196.

    Article  PubMed  Google Scholar 

  17. Chavez, K. J., Garimella, S. V., & Lipkowitz, S. (2010). Triple negative breast cancer cell lines: One tool in the search for better treatment of triple negative breast cancer. Breast Disease, 32, 35–48.

    PubMed Central  PubMed  Google Scholar 

  18. Feasey, C. M., Davison, M., & James, W. B. (1971). Effects of natural and forced cooling on the thermographic patterns of tumours. Physics in Medicine & Biology, 16, 213–220.

    Article  CAS  Google Scholar 

  19. Carter, P., Fendly, B. M., Lewis, G. D., & Sliwkowski, M. X. (2000). Development of herceptin. Breast Disease, 11, 103–111.

    CAS  PubMed  Google Scholar 

  20. Choudhury, A., & Kiessling, R. (2004). Her-2/neu as a paradigm of a tumor-specific target for therapy. Breast Disease, 20, 25–31.

    CAS  PubMed  Google Scholar 

  21. Lawson, R. N. (1956). Implications of surface temperatures in the diagnosis of breast cancer. Canadian Medical Association Journal, 75, 309–311.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Cowen, R. D., Lawson, R. N., & Saunders, A. L. (1956). Breast cancer and heptaldehyde; preliminary report. Canadian Medical Association Journal, 75, 486–488.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Lawson, R. N. (1958). A new infrared imaging device. Canadian Medical Association Journal, 79, 402–403.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Lawson, R. N. (1964). Early applications of thermography. Annals of the New York Academy of Sciences, 121, 31–33.

    Article  CAS  PubMed  Google Scholar 

  25. Lawson, R. N. (1966). A technique for identifying suitable veins for blood sampling in breast cancer. Canadian Medical Association Journal, 94, 451–453.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Lawson, R. N., & Alt, L. L. (1965). Skin temperature recording with phosphors: A new technique. Canadian Medical Association Journal, 92, 255–260.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Lawson, R. N., & Chughtai, M. S. (1963). Breast cancer and body temperature. Canadian Medical Association Journal, 88, 68–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Lawson, R. N., & Gaston, J. P. (1964). Temperature measurements of localized pathological processes. Annals of the New York Academy of Sciences, 121, 90–98.

    Article  CAS  PubMed  Google Scholar 

  29. Poisson, R., Larose, C., Charlebois, S., Pagacz, A., Mercier, J. P., & Lawson, R. N. (1976). Preliminary report on the individualised non-mutilating treatment of operable breast cancer. Clinical Oncology, 2, 55–71.

    CAS  PubMed  Google Scholar 

  30. Draper, J. W., & Jones, C. H. (1969). Thermal patterns of the female breast. British Journal of Radiology, 42, 401–410.

    Article  CAS  PubMed  Google Scholar 

  31. Draper, J. W., & Boag, J. W. (1971). The calculation of skin temperature distributions in thermography. Physics in Medicine & Biology, 16, 201–211.

    Article  CAS  Google Scholar 

  32. Draper, J. W., & Boag, J. W. (1971). Skin temperature distributions over veins and tumours. Physics in Medicine & Biology, 16, 645–654.

    Article  CAS  Google Scholar 

  33. Davison, M. (1972). Skin temperature distributions over veins and tumours. Physics in Medicine & Biology, 17, 309–310.

    Article  CAS  Google Scholar 

  34. Zastrow, E., Hagness, S. C., & Van Veen, B. D. (2010). 3D computational study of non-invasive patient-specific microwave hyperthermia treatment of breast cancer. Physics in Medicine & Biology, 55, 3611–3629.

    Article  Google Scholar 

  35. Chunfang, G., Kaiyang, L., & Shaoping, Z. (2005). A novel approach of analyzing the relation between the inner heat source and the surface temperature distribution in thermal texture maps, Conference proceedings :… Annual international conference of the IEEE Engineering in Medicine and Biology Society. In IEEE engineering in Medicine and Biology Society conference (Vol. 1, pp. 623–626).

  36. Feasey, C. M., James, W. B., & Davison, M. (1970). A technique for breast thermography. British Journal of Radiology, 43, 462–465.

    Article  CAS  PubMed  Google Scholar 

  37. SalmanOgli, A., & Rostami, A. (2012). Modeling and improvement of breast cancer site temperature profile by implantation of onion-like quantum-dot quantum-well heteronanocrystal in tumor site. IEEE Transactions on Nanotechnology, 11, 1183–1191.

    Article  Google Scholar 

  38. He, Y., Zheng, X., Sit, C., Loo, W.T., Wang, Z., Xie T. et al (2012). Using association rules mining to explore pattern of Chinese medicinal formulae (prescription) in treating and preventing breast cancer recurrence and metastasis. Journal of Translational Medicine, 10, S12.

  39. Qian, X., Tucker,A., Gidcumb, E., Lu, J., Zhou, O.,Spronk, D. et al (2012). A stationary digital breast tomosynthesis scanner, in: Proceedings of the SPIE medical imaging, International Society for Optics and Photonics, pp. 831352–831311.

  40. Ye, F., & Shi, G. L. (2013). Clinical breast cancer analysis with surface fitting in the medical thermal texture maps. Applied Mechanics and Materials, 263, 2454–2457.

    Google Scholar 

  41. Liu, K.-C., & Lin, C.-N. (2010). Temperature prediction for tumor hyperthermia with the behavior of thermal wave. Numerical Heat Transfer, Part A, 58, 819–833.

    Article  CAS  Google Scholar 

  42. Erb, K. M., Shapiro-Wright, H. M., & Julian, T. B. (2010). Axillary recurrences following positive sentinel lymph node biopsy with individual tumor cells or micrometastases and no axillary dissection. Breast disease, 31, 83–90.

    PubMed  Google Scholar 

  43. Farese, S. A., & Aebi, S. (2008). Infiltrating lobular carcinoma of the breast: Systemic treatment. Breast disease, 30, 45–52.

    PubMed  Google Scholar 

  44. Pennes, H. H. (1948). Analysis of tissue and arterial blood temperatures in the resting human forearm. Journal of Applied Physiology, 1, 93–122.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by grants from the National Major Special Program of Scientific Instrument & Equipment Development of China (No. 2012YQ160203) and the first author also thanks financial supports by the Fundamental Research Funds for the Center Universities of China (No. 2011120202020006).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaiyang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, F., Shi, G., Liang, C. et al. A Simple and Efficient Method for Breast Cancer Diagnosis Based on Infrared Thermal Imaging. Cell Biochem Biophys 71, 491–498 (2015). https://doi.org/10.1007/s12013-014-0229-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-0229-5

Keywords

Navigation