Cell Biochemistry and Biophysics

, Volume 71, Issue 1, pp 17–26 | Cite as

Meta-analytic Comparison Between PIB-PET and FDG-PET Results in Alzheimer’s Disease and MCI

  • Wei He
  • Dinghua Liu
  • Joaquim Radua
  • GuoQing Li
  • Bojun Han
  • Zhigang Sun
Original Paper

Abstract

We conducted a meta-analysis of positron emission tomography (PET) findings in Alzheimer’s disease (AD) and mild cognitive impairment (MCI) to clarify the changes underpinning these conditions. All studies that utilised the PET tracers Pittsburgh Compound-B (PIB) or 2-[18F]fluoro-2-deoxy-d-glucose (FDG) to investigate patients with MCI or AD, were considered for the meta-analysis. Meta-analyses of PIB-PET and FDG-PET changes between patients and controls were undertaken with the effect-size signed differential mapping (ES-SDM) voxel-based meta-analytic method. A total of 24 studies were included involving 728 AD patients, 211 MCI patients and 658 healthy controls. Individuals with AD showed a significant PIB retention in bilateral precuneus and temporal, supramarginal, cingulate and fusiform gyri, as well as right insula and putamen. In addition, AD patients showed significant glucose hypometabolism in bilateral precuneus and temporal, supramarginal, cingulate, fusiform, angular, inferior parietal and middle frontal gyri, as well as left precentral and parahippocampal gyri and right superior frontal gyrus and thalamus. An exploratory meta-analysis of the few studies on MCI showed mildly decreased glucose metabolism with a similar regional distribution than in patients with AD. We suggest that our results can be used for further region-of-interest studies of AD and MCI patients.

Keywords

Mild cognitive impairment Meta-analysis Voxel-based morphometry 

Supplementary material

12013_2014_138_MOESM1_ESM.doc (97 kb)
Supplementary material 1 (DOC 97 kb)

References

  1. 1.
    Rinne, J. O., & Nagren, K. (2010). Positron emission tomography in at risk patients and in the progression of mild cognitive impairment to Alzheimer’s disease. Journal of Alzheimer’s Disease, 19(1), 291–300.PubMedGoogle Scholar
  2. 2.
    Berti, V., Osorio, R. S., Mosconi, L., Li, Y., De Santi, S., & de Leon, M. J. (2010). Early detection of Alzheimer’s disease with PET imaging. Neurodegenerative Disease, 7(1–3), 131–135.CrossRefGoogle Scholar
  3. 3.
    Ashburner, J., & Friston, K. J. (2000). Voxel-based morphometry—The methods. Neuroimage, 11(6 Pt 1), 805–821.PubMedCrossRefGoogle Scholar
  4. 4.
    Ashburner, J., & Friston, K. J. (2001). Why voxel-based morphometry should be used. Neuroimage, 14(6), 1238–1243.PubMedCrossRefGoogle Scholar
  5. 5.
    Svarer, C., Madsen, K., Hasselbalch, S. G., Pinborg, L. H., Haugbol, S., Frokjaer, V. G., et al. (2005). MR-based automatic delineation of volumes of interest in human brain PET images using probability maps. Neuroimage, 24(4), 969–979.PubMedCrossRefGoogle Scholar
  6. 6.
    Radua, J., & Mataix-Cols, D. (2009). Voxel-wise meta-analysis of grey matter changes in obsessive-compulsive disorder. British Journal of Psychiatry, 195(5), 393–402.PubMedCrossRefGoogle Scholar
  7. 7.
    Radua, J., Mataix-Cols, D., Phillips, M. L., El-Hage, W., Kronhaus, D. M., Cardoner, N., et al. (2011). A new meta-analytic method for neuroimaging studies that combines reported peak coordinates and statistical parametric maps. European Psychiatry, 27(8), 605–611.PubMedCrossRefGoogle Scholar
  8. 8.
    Turkeltaub, P. E., Eden, G. F., Jones, K. M., & Zeffiro, T. A. (2002). Meta-analysis of the functional neuroanatomy of single-word reading: Method and validation. Neuroimage, 16(3 Pt 1), 765–780.PubMedCrossRefGoogle Scholar
  9. 9.
    Wager, T. D., Lindquist, M., & Kaplan, L. (2007). Meta-analysis of functional neuroimaging data: Current and future directions. Social Cognitive and Affective Neuroscience, 2(2), 150–158.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., & Stadlan, E. M. (1984). Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology, 34(7), 939–944.PubMedCrossRefGoogle Scholar
  11. 11.
    Petersen, R. C., Doody, R., Kurz, A., Mohs, R. C., Morris, J. C., Rabins, P. V., et al. (2001). Current concepts in mild cognitive impairment. Archives of Neurology, 58(12), 1985–1992.PubMedCrossRefGoogle Scholar
  12. 12.
    Petersen, R. C., Parisi, J. E., Dickson, D. W., Johnson, K. A., Knopman, D. S., Boeve, B. F., et al. (2006). Neuropathologic features of amnestic mild cognitive impairment. Archives of Neurology, 63(5), 665–672.PubMedCrossRefGoogle Scholar
  13. 13.
    Lancaster, J. L., Tordesillas-Gutierrez, D., Martinez, M., Salinas, F., Evans, A., Zilles, K., et al. (2007). Bias between MNI and Talairach coordinates analyzed using the ICBM-152 brain template. Human Brain Mapping, 28(11), 1194–1205.PubMedCrossRefGoogle Scholar
  14. 14.
    Okello, A., Koivunen, J., Edison, P., Archer, H. A., Turkheimer, F. E., Nagren, K., et al. (2009). Conversion of amyloid positive and negative MCI to AD over 3 years: An 11C-PIB PET study. Neurology, 73(10), 754–760.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Mikhno, A., Devanand, D., Pelton, G., Cuasay, K., Gunn, R., Upton, N., et al. (2008). Voxel-based analysis of 11C-PIB scans for diagnosing Alzheimer’s disease. Journal of Nuclear Medicine, 49(8), 1262–1269.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Frisoni, G. B., Lorenzi, M., Caroli, A., Kemppainen, N., Nagren, K., & Rinne, J. O. (2009). In vivo mapping of amyloid toxicity in Alzheimer disease. Neurology, 72(17), 1504–1511.PubMedCrossRefGoogle Scholar
  17. 17.
    Ng, S. Y., Villemagne, V. L., Masters, C. L., & Rowe, C. C. (2007). Evaluating atypical dementia syndromes using positron emission tomography with carbon 11 labeled Pittsburgh Compound B. Archives of Neurology, 64(8), 1140–1144.PubMedCrossRefGoogle Scholar
  18. 18.
    Nelissen, N., Vandenbulcke, M., Fannes, K., Verbruggen, A., Peeters, R., Dupont, P., et al. (2007). Abeta amyloid deposition in the language system and how the brain responds. Brain, 130(Pt 8), 2055–2069.PubMedCrossRefGoogle Scholar
  19. 19.
    Drzezga, A., Grimmer, T., Henriksen, G., Muhlau, M., Perneczky, R., Miederer, I., et al. (2009). Effect of APOE genotype on amyloid plaque load and gray matter volume in Alzheimer disease. Neurology, 72(17), 1487–1494.PubMedCrossRefGoogle Scholar
  20. 20.
    Drzezga, A., Grimmer, T., Henriksen, G., Stangier, I., Perneczky, R., Diehl-Schmid, J., et al. (2008). Imaging of amyloid plaques and cerebral glucose metabolism in semantic dementia and Alzheimer’s disease. Neuroimage, 39(2), 619–633.PubMedCrossRefGoogle Scholar
  21. 21.
    Ziolko, S. K., Weissfeld, L. A., Klunk, W. E., Mathis, C. A., Hoge, J. A., Lopresti, B. J., et al. (2006). Evaluation of voxel-based methods for the statistical analysis of PIB PET amyloid imaging studies in Alzheimer’s disease. Neuroimage, 33(1), 94–102.PubMedCrossRefGoogle Scholar
  22. 22.
    Chetelat, G., Villemagne, V. L., Pike, K. E., Ellis, K. A., Bourgeat, P., Jones, G., et al. (2011). Independent contribution of temporal beta-amyloid deposition to memory decline in the pre-dementia phase of Alzheimer’s disease. Brain, 134(Pt 3), 798–807.PubMedCrossRefGoogle Scholar
  23. 23.
    Shin, J., Lee, S. Y., Kim, S. J., Kim, S. H., Cho, S. J., & Kim, Y. B. (2010). Voxel-based analysis of Alzheimer’s disease PET imaging using a triplet of radiotracers: PIB, FDDNP, and FDG. Neuroimage, 52(2), 488–496.PubMedCrossRefGoogle Scholar
  24. 24.
    Kemppainen, N. M., Aalto, S., Wilson, I. A., Nagren, K., Helin, S., Bruck, A., et al. (2007). PET amyloid ligand [11C]PIB uptake is increased in mild cognitive impairment. Neurology, 68(19), 1603–1606.PubMedCrossRefGoogle Scholar
  25. 25.
    Del Sole, A., Clerici, F., Chiti, A., Lecchi, M., Mariani, C., Maggiore, L., et al. (2008). Individual cerebral metabolic deficits in Alzheimer’s disease and amnestic mild cognitive impairment: An FDG PET study. European Journal of Nuclear Medicine and Molecular Imaging, 35(7), 1357–1366.PubMedCrossRefGoogle Scholar
  26. 26.
    Smith, G. S., Kramer, E., Ma, Y., Hermann, C. R., Dhawan, V., Chaly, T., et al. (2009). Cholinergic modulation of the cerebral metabolic response to citalopram in Alzheimer’s disease. Brain, 132(Pt 2), 392–401.PubMedCentralPubMedGoogle Scholar
  27. 27.
    Yakushev, I., Landvogt, C., Buchholz, H. G., Fellgiebel, A., Hammers, A., Scheurich, A., et al. (2008). Choice of reference area in studies of Alzheimer’s disease using positron emission tomography with fluorodeoxyglucose-F18. Psychiatry Research, 164(2), 143–153.PubMedCrossRefGoogle Scholar
  28. 28.
    Chetelat, G., Desgranges, B., Landeau, B., Mezenge, F., Poline, J. B., de la Sayette, V., et al. (2008). Direct voxel-based comparison between grey matter hypometabolism and atrophy in Alzheimer’s disease. Brain, 131(Pt 1), 60–71.PubMedGoogle Scholar
  29. 29.
    Habeck, C., Foster, N. L., Perneczky, R., Kurz, A., Alexopoulos, P., Koeppe, R. A., et al. (2008). Multivariate and univariate neuroimaging biomarkers of Alzheimer’s disease. Neuroimage, 40(4), 1503–1515.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Hunt, A., Schonknecht, P., Henze, M., Seidl, U., Haberkorn, U., & Schroder, J. (2007). Reduced cerebral glucose metabolism in patients at risk for Alzheimer’s disease. Psychiatry Research, 155(2), 147–154.PubMedCrossRefGoogle Scholar
  31. 31.
    Kim, S. H., Seo, S. W., Yoon, D. S., Chin, J., Lee, B. H., Cheong, H. K., et al. (2010). Comparison of neuropsychological and FDG-PET findings between early- versus late-onset mild cognitive impairment: A five-year longitudinal study. Dementia and Geriatric Cognitive Disorders, 29(3), 213–223.PubMedCrossRefGoogle Scholar
  32. 32.
    Lee, D. Y., Seo, E. H., Choo, I. H., Kim, S. G., Lee, J. S., Lee, D. S., et al. (2008). Neural correlates of the Clock Drawing Test performance in Alzheimer’s disease: A FDG-PET study. Dementia and Geriatric Cognitive Disorders, 26(4), 306–313.PubMedCrossRefGoogle Scholar
  33. 33.
    Matsunari, I., Samuraki, M., Chen, W. P., Yanase, D., Takeda, N., Ono, K., et al. (2007). Comparison of 18F-FDG PET and optimized voxel-based morphometry for detection of Alzheimer’s disease: Aging effect on diagnostic performance. Journal of Nuclear Medicine, 48(12), 1961–1970.PubMedCrossRefGoogle Scholar
  34. 34.
    Mosconi, L., Herholz, K., Prohovnik, I., Nacmias, B., De Cristofaro, M. T., Fayyaz, M., et al. (2005). Metabolic interaction between ApoE genotype and onset age in Alzheimer’s disease: Implications for brain reserve. Journal of Neurology, Neurosurgery and Psychiatry, 76(1), 15–23.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Wu, X., Chen, K., Yao, L., Ayutyanont, N., Langbaum, J. B., Fleisher, A., et al. (2010). Assessing the reliability to detect cerebral hypometabolism in probable Alzheimer’s disease and amnestic mild cognitive impairment. Journal of Neuroscience Methods, 192(2), 277–285.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Xu, C., Wang, Z., Fan, M., Liu, B., Song, M., Zhen, X., et al. (2010). Effects of BDNF Val66Met polymorphism on brain metabolism in Alzheimer’s disease. NeuroReport, 21(12), 802–807.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Choo, I. H., Lee, D. Y., Youn, J. C., Jhoo, J. H., Kim, K. W., Lee, D. S., et al. (2007). Topographic patterns of brain functional impairment progression according to clinical severity staging in 116 Alzheimer disease patients: FDG-PET study. Alzheimer Disease and Associated Disorders, 21(2), 77–84.PubMedCrossRefGoogle Scholar
  38. 38.
    Ishii, K., Sasaki, H., Kono, A. K., Miyamoto, N., Fukuda, T., & Mori, E. (2005). Comparison of gray matter and metabolic reduction in mild Alzheimer’s disease using FDG-PET and voxel-based morphometric MR studies. European Journal of Nuclear Medicine and Molecular Imaging, 32(8), 959–963.PubMedCrossRefGoogle Scholar
  39. 39.
    Kanda, T., Ishii, K., Uemura, T., Miyamoto, N., Yoshikawa, T., Kono, A. K., et al. (2008). Comparison of grey matter and metabolic reductions in frontotemporal dementia using FDG-PET and voxel-based morphometric MR studies. European Journal of Nuclear Medicine and Molecular Imaging, 35(12), 2227–2234.PubMedCrossRefGoogle Scholar
  40. 40.
    Kawachi, T., Ishii, K., Sakamoto, S., Sasaki, M., Mori, T., Yamashita, F., et al. (2006). Comparison of the diagnostic performance of FDG-PET and VBM-MRI in very mild Alzheimer’s disease. European Journal of Nuclear Medicine and Molecular Imaging, 33(7), 801–809.PubMedCrossRefGoogle Scholar
  41. 41.
    Kim, E. J., Cho, S. S., Jeong, Y., Park, K. C., Kang, S. J., Kang, E., et al. (2005). Glucose metabolism in early onset versus late onset Alzheimer’s disease: An SPM analysis of 120 patients. Brain, 128(Pt 8), 1790–1801.PubMedCrossRefGoogle Scholar
  42. 42.
    Langbaum, J. B., Chen, K., Lee, W., Reschke, C., Bandy, D., Fleisher, A. S., et al. (2009). Categorical and correlational analyses of baseline fluorodeoxyglucose positron emission tomography images from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Neuroimage, 45(4), 1107–1116.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Sakamoto, S., Ishii, K., Hosaka, K., Mori, T., Sasaki, M., & Mori, E. (2005). Detectability of hypometabolic regions in mild Alzheimer disease: Function of time after the injection of 2-[fluorine 18]-fluoro-2-deoxy-d-glucose. AJNR. American Journal of Neuroradiology, 26(4), 843–847.PubMedGoogle Scholar
  44. 44.
    Samuraki, M., Matsunari, I., Chen, W. P., Yajima, K., Yanase, D., Fujikawa, A., et al. (2007). Partial volume effect-corrected FDG PET and grey matter volume loss in patients with mild Alzheimer’s disease. European Journal of Nuclear Medicine and Molecular Imaging, 34(10), 1658–1669.PubMedCrossRefGoogle Scholar
  45. 45.
    Yuan, X., Shan, B., Ma, Y., Tian, J., Jiang, K., Cao, Q., et al. (2010). Multi-center study on Alzheimer’s disease using FDG PET: Group and individual analyses. Journal of Alzheimer’s Disease, 19(3), 927–935.PubMedGoogle Scholar
  46. 46.
    Ishii, H., Ishikawa, H., Meguro, K., Tashiro, M., & Yamaguchi, S. (2009). Decreased cortical glucose metabolism in converters from CDR 0.5 to Alzheimer’s disease in a community: The Osaki-Tajiri Project. International Psychogeriatrics, 21(1), 148–156.PubMedCrossRefGoogle Scholar
  47. 47.
    Morbelli, S., Piccardo, A., Villavecchia, G., Dessi, B., Brugnolo, A., Piccini, A., et al. (2010). Mapping brain morphological and functional conversion patterns in amnestic MCI: A voxel-based MRI and FDG-PET study. European Journal of Nuclear Medicine and Molecular Imaging, 37(1), 36–45.PubMedCrossRefGoogle Scholar
  48. 48.
    Schroeter, M. L., Stein, T., Maslowski, N., & Neumann, J. (2009). Neural correlates of Alzheimer’s disease and mild cognitive impairment: A systematic and quantitative meta-analysis involving 1351 patients. Neuroimage, 47(4), 1196–1206.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Edison, P., Archer, H. A., Hinz, R., Hammers, A., Pavese, N., Tai, Y. F., et al. (2007). Amyloid, hypometabolism, and cognition in Alzheimer disease: An [11C]PIB and [18F]FDG PET study. Neurology, 68(7), 501–508.PubMedCrossRefGoogle Scholar
  50. 50.
    Herholz, K., Carter, S. F., & Jones, M. (2007). Positron emission tomography imaging in dementia. The British Journal of Radiology, 80 Spec No. 2, S160–S167.PubMedCrossRefGoogle Scholar
  51. 51.
    Wong, K. P., Wardak, M., Shao, W., Dahlbom, M., Kepe, V., Liu, J., et al. (2010). Quantitative analysis of [18F]FDDNP PET using subcortical white matter as reference region. European Journal of Nuclear Medicine and Molecular Imaging, 37(3), 575–588.PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Braak, H., & Braak, E. (1991). Neuropathological staging of Alzheimer-related changes. Acta Neuropathologica, 82(4), 239–259.PubMedCrossRefGoogle Scholar
  53. 53.
    Hoffman, E. J., Huang, S. C., & Phelps, M. E. (1979). Quantitation in positron emission computed tomography: 1. Effect of object size. Journal of Computer Assisted Tomography, 3(3), 299–308.PubMedCrossRefGoogle Scholar
  54. 54.
    Tohru, S., Isabelle, M., Ken, H., Gjermund, H., Christine, P., Markus, S., et al. (2009). The effect of partial volume effect correction on PIB and FDG PET data in MCI and AD patients. Journal of Nuclear Medicine, 50(Supplement 2), 428.Google Scholar
  55. 55.
    Salimi-Khorshidi, G., Smith, S. M., Keltner, J. R., Wager, T. D., & Nichols, T. E. (2009). Meta-analysis of neuroimaging data: A comparison of image-based and coordinate-based pooling of studies. Neuroimage, 45(3), 810–823.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Wei He
    • 1
  • Dinghua Liu
    • 2
  • Joaquim Radua
    • 3
    • 4
  • GuoQing Li
    • 1
  • Bojun Han
    • 2
  • Zhigang Sun
    • 1
  1. 1.Department of Physical Medicine and RehabilitationThe Affiliated Jiangyin People’s Hospital of Southeast University Medical CollegeWuxiChina
  2. 2.Department of NeurologyThe Affiliated Jiangyin People’s Hospital of Southeast University Medical CollegeWuxiPeople’s Republic of China
  3. 3.Department of Psychosis Studies, Institute of PsychiatryKing’s College LondonLondonUK
  4. 4.FIDMAG, CIBERSAMSant Boi de LlobregatSpain

Personalised recommendations