Cell Biochemistry and Biophysics

, Volume 70, Issue 2, pp 1479–1488 | Cite as

Polar Characterization of Antifungal Peptides from APD2 Database

  • Carlos Polanco
  • José Lino Samaniego-Mendoza
  • Thomas Buhse
  • Jorge Alberto Castañón-González
  • Marili Leopold-Sordo
Original Paper

Abstract

The increase in the number of pathogens due to fungi that are tolerant to therapies does not grow at the same speed than the advance on new antifungal drugs. In this sense, it is imperative to find anti-fungi peptides that are not detrimental to mammalian cells and have an effective toxicity to fungi. In this work, we use a method called polarity index, to identify anti-fungi peptides with an efficiency of 70 %. This method already published, initially identified selective antibacterial peptides from APD2 Database, and was characterized by developing a comprehensive analysis of the polar dynamics of a peptide from its linear sequence. Discriminating tests showed that in addition to being efficient in this identification, it was also good at rejecting other classifications of peptides found in that same database.

Keywords

Polarity index method Selective antibacterial peptides Anti-fungi peptides 

Abbreviations

SCAAP

Selective cationic amphipathic antibacterial peptides

APD2

Antimicrobial peptide database

QSAR

Quantitative structure activity relationships

Supplementary material

12013_2014_85_MOESM1_ESM.gif (1 kb)
Supplementary material 1 (GIF 1 kb)

References

  1. 1.
    Rutala, W. A., Barbee, S. L., Aguiar, N. C., Sobsey, M. D., & Weber, D. J. (2000). Antimicrobial activity of home disinfectants and natural products against potential human pathogens. Infection Control and Hospital Epidemiology, 21(1), 33–38.CrossRefPubMedGoogle Scholar
  2. 2.
    Mello, E. O., Ribeiro, S. F., Carvalho, A. O., Santos, I. S., Da Cunha, M., Santa-Catarina, C., et al. (2011). Antifungal activity of PvD1 defensin involves plasma membrane permeabilization, inhibition of medium acidification, and induction of ROS in fungi cells. Current Microbiology, 62(4), 1209–1217.CrossRefPubMedGoogle Scholar
  3. 3.
    Fridkin, S. K., & Jarvis, W. R. (1996). Epidemiology of nosocomial fungal infections. Clinical Microbiology Reviews, 9(4), 499–511.PubMedCentralPubMedGoogle Scholar
  4. 4.
    Powderly, W. G., Mayer, K. H., & Perfect, J. R. (1999). Diagnosis and treatment of oropharyngeal candidiasis in patients infected with HIV: a critical reassessment. AIDS Research and Human Retroviruses, 15(16), 1405–1412.CrossRefPubMedGoogle Scholar
  5. 5.
    Rippon, J. W. (1988). Medical mycology (3rd ed.). Philadelphia: WB Saunders Co.Google Scholar
  6. 6.
    Law, D., Moore, C. B., Joseph, L. A., Keaney, M. G., & Denning, D. W. (1996). High incidence of antifungal drug resistance in Candida tropicalis. International Journal of Antimicrobial Agents, 7(4), 241–245.CrossRefPubMedGoogle Scholar
  7. 7.
    Polanco, C., Samaniego, J. L., Buhse, T., Mosqueira, F. G., Negron-Mendoza, A., Ramos-Bernal, S., et al. (2012). Characterization of selective antibacterial peptides by polarity index. International Journal of Peptides. doi:10.1155/2012/585027.PubMedCentralPubMedGoogle Scholar
  8. 8.
    Polanco González, C., Nuño Maganda, M. A., Arias-Estrada, M., & del Rio, G. (2011). An FPGA implementation to detect selective cationic antibacterial peptides. PloS One, 6(6), e21399.CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Polanco, C., & Samaniego, J. L. (2009). Detection of selective cationic amphipathic antibacterial peptides by Hidden Markov models. Acta Biochimica Polonica, 56, 167–176.PubMedGoogle Scholar
  10. 10.
    del Rio, G., Castro-Obregon, S., Rao, R., Ellerby, H. M., & Bredesen, D. E. (2001). APAP, a sequence-pattern recognition approach identifies substance P as a potential apoptotic peptide. FEBS Letters, 3, 213–219.Google Scholar
  11. 11.
    Polanco, C., Buhse, T., Samaniego, J. L., & Castañón González, J. A. (2013). A toy model of prebiotic peptide evolution: the possible role of relative amino acid abundances. Acta Biochimica Polonica, 60(2), 175–182.PubMedGoogle Scholar
  12. 12.
    Wang, G., Li, X., & Wang, Z. (2009). APD2: the updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Research, 37, D933–D937.CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Lipkin, A., Anisimova, V., Nikonorova, A., Babakov, A., Krause, E., Bienert, M., et al. (2005). An antimicrobial peptide Ar-AMP from amaranth (Amaranthus retroflexus L.) seeds. Phytochemistry, 66(20), 2426–2431.CrossRefPubMedGoogle Scholar
  14. 14.
    Kaiserer, L., Oberparleiter, C., Weiler-Görz, R., Burgstaller, W., Leiter, E., & Marx, F. (2003). Characterization of the Penicillium chrysogenum antifungal protein PAF. Archives of Microbiology, 180(3), 204–210.CrossRefPubMedGoogle Scholar
  15. 15.
    Cabras, T., Longhi, R., Secundo, F., Nocca, G., Conti, S., Polonelli, L., et al. (2008). Structural and functional chacterization of the porcine proline-rich antifungal peptide SP-B isolated from salivary gland granule. Journal of Peptide Science, 14(3), 251–260.CrossRefPubMedGoogle Scholar
  16. 16.
    Lay, F. T., Brugliera, F., & Anderson, M. A. (2003). Isolation and properties of floral defensins from ornamental tobacco and petunia. Plant Physiology, 131(3), 1283–1293.CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Campos-Olivas, R., Bruix, M., Santoro, J., Lacadena, J., Martinez del Pozo, A., Gavilanes, J. G., et al. (1995). NMR solution structure of the antifungal protein from Aspergillus giganteus: evidence for cysteine pairing isomerism. Biochemistry, 34(9), 3009–3021.CrossRefPubMedGoogle Scholar
  18. 18.
    Kouno, T., Mizuguchi, M., Tanaka, H., Yang, P., Mori, Y., Shinoda, H., et al. (2007). Th estructure of a novel insect peptide explains its Ca2+ cannel blocking and antifungal activities. Biochemistry, 46(48), 13733–13741.CrossRefPubMedGoogle Scholar
  19. 19.
    Barbault, F., Landon, C., Guenneugues, M., Meyer, J. P., Schott, V., Dimarcq, J. L., et al. (2003). Solution structure of Alo-3: a new knottin-type antifungal peptide from the insect Acrocinus longimanus. Biochemistry, 42(49), 14434–14442.CrossRefPubMedGoogle Scholar
  20. 20.
    Simon, A., Kullberg, B. J., Tripet, B., Boerman, O. C., Zeeuwen, P., van der Ven-Jongekrijg, J., et al. (2008). Drosomycin-like defensin, a human homologue of Drosophila melanogaster drosomycin with antifungal activity. Antimicrobial Agents and Chemotherapy, 52(4), 1407–1412.CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Li, J., Xu, X., Xu, C., Zhou, W., Zhang, K., Yu, H., et al. (2007). Anti-infection peptidomics of amphibian skin. Molecular and Cellular Proteomics, 6(5), 882–894.CrossRefPubMedGoogle Scholar
  22. 22.
    Osborn, R. W., De Samblanx, G. W., Thevissen, K., Goderis, I., Torrekens, S., Van Leuven, F., et al. (1995). Isolation and characterisation of plant defensins from seeds of Asteraceae, Fabaceae, Hippocastanaceae and Saxifragaceae. FEBS Letters, 368(2), 257–262.CrossRefPubMedGoogle Scholar
  23. 23.
    Lamberty, M., Caille, A., Landon, C., Tassin-Moindrot, S., Hetru, C., Bulet, P., et al. (2001). Solution structures of the antifungal heliomicin and a selected variant with both antibacterial and antifungal activities. Biochemistry, 40(40), 11995–12003.CrossRefPubMedGoogle Scholar
  24. 24.
    Landon, C., Guenneugues, M., Barbault, F., Legrain, M., Menin, L., Schott, V., et al. (2004). Lead optimization of antifungal peptides with 3D NMR structures analysis. Protein Science, 13(3), 703–713.CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Marcus, J. P., Green, J. L., Goulter, K. C., & Manners, J. M. (1999). A family of antimicrobial peptides is produced by processing of a 7S globulin protein in Macadamia integrifolia kernels. Plant J, 19(6), 699–710.CrossRefPubMedGoogle Scholar
  26. 26.
    Troxler, R. F., Offner, G. D., Xu, T., Vanderspek, J. C., & Oppenheim, F. G. (1990). Structural relation between human salivary histatins. Journal of Dental Research, 69(1), 2–6.CrossRefPubMedGoogle Scholar
  27. 27.
    Padovan, L., Segat, L., Pontillo, A., Antcheva, N., Tossi, A., & Crovella, S. (2010). Histatins in non-human primates: gene variations and functional effects. Protein and Peptide Letters, 17(7), 909–918.CrossRefPubMedGoogle Scholar
  28. 28.
    Lee, Y. S., Yun, E. K., Jang, W. S., Kim, L., Lee, J. H., Park, S. Y., et al. (2004). Purification, cDNA cloning and expression of an insect defensin from the great wax moth Galleria mellonella. Insect Mol Biol, 13(1), 65–72.CrossRefPubMedGoogle Scholar
  29. 29.
    Xiao, Y., Meng, F., Qiu, D., & Yang, X. (2012). Two novel antimicrobial peptides purified from the symbiotic bacteria Xenorhabdus budapestensis NMC-10. Peptides, 35(2), 253–260.CrossRefPubMedGoogle Scholar
  30. 30.
    de Zélicourt, A., Letousey, P., Thoiron, S., Campion, C., Simoneau, P., Elmorjani, K., et al. (2007). Ha-DEF1, a sunflower defensin, induces cell death in Orobanche parasitic plants. Planta, 226(3), 591–600.CrossRefPubMedGoogle Scholar
  31. 31.
    Tomie, T., Ishibashi, J., Furukawa, S., Kobayashi, S., Sawahata, R., Asaoka, A., et al. (2003). Scarabaecin, a novel cysteine-containing antifungal peptide from the rhinoceros beetle, Oryctes rhinoceros. Biochemical and Biophysical Research Communication, 307(2), 261–266.CrossRefGoogle Scholar
  32. 32.
    Soedjanaatmadja, U. M., Hofsteenge, J., Jeronimus-Stratingh, C. M., Bruins, A. P., & Beintema, J. J. (1994). Demonstration by mass spectrometry that pseudo-hevein and hevein have ragged C-terminal sequences. Biochimica et Biophysica Acta, 1209(1), 144–148.CrossRefPubMedGoogle Scholar
  33. 33.
    Huang, R. H., Xiang, Y., Liu, X. Z., Zhang, Y., Hu, Z., & Wang, D. C. (2002). Two novel antifungal peptides distinct with a five-disulfide motif from the bark of Eucommia ulmoides Oliv. FEBS Letters, 521(1–3), 87–90.CrossRefPubMedGoogle Scholar
  34. 34.
    Basir, Y. J., Knoop, F. C., Dulka, J., & Conlon, J. M. (2000). Multiple antimicrobial peptides and peptides related to bradykinin and neuromedin N isolated from skin secretions of the pickerel frog, Rana palustris. Biochimica et Biophysica Acta, 1543(1), 95–105.CrossRefPubMedGoogle Scholar
  35. 35.
    Rydengård, V., Shannon, O., Lundqvist, K., Kacprzyk, L., Chalupka, A., Olsson, A. K., et al. (2008). Histidine-rich glycoprotein protects from systemic Candida infection. PLoS Pathogens, 4(8), e1000116.CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Rollins-Smith, L. A., Woodhams, D. C., Reinert, L. K., Vredenburg, V. T., Briggs, C. J., Nielsen, P. F., et al. (2006). Antimicrobial peptide defenses of the mountain yellow-legged frog (Rana muscosa). Developmental and Comparative Immunology, 30(9), 831–842.CrossRefPubMedGoogle Scholar
  37. 37.
    Baek, J. H., & Lee, S. H. (2010). Isolation and molecular cloning of venom peptides from Orancistrocerus drewseni (Hymenoptera: Eumenidae). Toxicon, 55(4), 711–718.CrossRefPubMedGoogle Scholar
  38. 38.
    Schuhmann, B., Seitz, V., Vilcinskas, A., & Podsiadlowski, L. (2003). Cloning and expression of gallerimycin, an antifungal peptide expressed in immune response of greater wax moth larvae, Galleria mellon. Archives of Insect Biochemistry Physiology, 53(3), 125–133.CrossRefPubMedGoogle Scholar
  39. 39.
    Kylsten, P., Samakovlis, C., & Hultmark, D. (1990). The cecropin locus in Drosophila; a compact gene cluster involved in the response to infection. EMBO Journal, 9(1), 217–224.PubMedCentralPubMedGoogle Scholar
  40. 40.
    De-Paula, V. S., Razzera, G., Medeiros, L., Miyamoto, C. A., Almeida, M. S., Kurtenbach, E., et al. (2008). Evolutionary relationship between defensins in the Poaceae family strengthened by the characterization of new sugarcane defensins. Plant Molecular Biology, 68(4–5), 321–335.CrossRefPubMedGoogle Scholar
  41. 41.
    Hunter, H. N., Fulton, D. B., Ganz, T., & Vogel, H. J. (2002). The solution structure of human hepcidin, a peptide hormone with antimicrobial activity that is involved in iron uptake and hereditary hemochromatosis. Journal of Biological Chemistry, 277(4), 37597–37603.CrossRefPubMedGoogle Scholar
  42. 42.
    Zottich, U., Da Cunha, M., Carvalho, A. O., Dias, G. B., Silva, N. C., Santos, I. S., et al. (2011). Purification, biochemical characterization and antifungal activity of a new lipid transfer protein (LTP) from Coffea canephora seeds with α-amylase inhibitor properties. Biochimica et Biophysica Acta, 1810(4), 375–383.CrossRefPubMedGoogle Scholar
  43. 43.
    Yamada, S., Komori, T., Myers, P. N., Kuwata, S., Kubo, T., & Imaseki, H. (1997). Expression of plasma membrane water channel genes under water stress in Nicotiana excelsior. Plant and Cell Physiology, 38(11), 1226–1231.CrossRefPubMedGoogle Scholar
  44. 44.
    Slavokhotova, A. A., Odintsova, T. I., Rogozhin, E. A., Musolyamov, A. K., Andreev, Y. A., Grishin, E. V., et al. (2011). Isolation, molecular cloning and antimicrobial activity of novel defensins from common chickweed (Stellaria media L.) seeds. Biochimie, 93(3), 450–456.CrossRefPubMedGoogle Scholar
  45. 45.
    Terras, F. R., Torrekens, S., Van Leuven, F., Osborn, R. W., Vanderleyden, J., Cammue, B. P., et al. (1993). A new family of basic cysteine-rich plant antifungal proteins from Brassicaceae species. FEBS Letters, 316(3), 233–240.CrossRefPubMedGoogle Scholar
  46. 46.
    Zhang, B., Xie, C., & Yang, X. (2008). A novel small antifungal peptide from Bacillus strain B-TL2 isolated from tobacco stems. Peptides, 29(3), 350–355.CrossRefPubMedGoogle Scholar
  47. 47.
    Marcus, J. P., Green, J. L., Goulter, K. C., & Manners, J. M. (1999). A family of antimicrobial peptides is produced by processing of a 7S globulin protein in Macadamia integrifolia kernels. The Plant Journal, 19(6), 699–710.CrossRefPubMedGoogle Scholar
  48. 48.
    Almeida, M. S., Cabral, K. M., Zingali, R. B., & Kurtenbach, E. (2000). Characterization of two novel defense peptides from pea (Pisum sativum) seeds. Archives of Biochemistry and Biophysics, 378(2), 278–286.CrossRefPubMedGoogle Scholar
  49. 49.
    Games, P. D., Dos Santos, I. S., Mello, E. O., Diz, M. S., Carvalho, A. O., de Souza-Filho, G. A., et al. (2008). Isolation, characterization and cloning of a cDNA encoding a new antifungal defensin from Phaseolus vulgaris L. seeds. Peptides, 29(12), 2090–2100.CrossRefPubMedGoogle Scholar
  50. 50.
    Ishibashi, N., Yamauchi, D., & Minamikawa, T. (1990). Stored mRNA in cotyledons of Vigna unguiculata seeds: nucleotide sequence of cloned cDNA for a stored mRNA and induction of its synthesis by precocious germination. Plant Molecular Biology, 15(1), 59–64.CrossRefPubMedGoogle Scholar
  51. 51.
    Fant, F., Vranken, W. F., & Borremans, F. A. (1999). The three-dimensional solution structure of Aesculus hippocastanum antimicrobial protein 1 determined by 1H nuclear magnetic resonance. Proteins, 37(3), 388–403.CrossRefPubMedGoogle Scholar
  52. 52.
    Mandal, S. M., Migliolo, L., Franco, O. L., & Ghosh, A. K. (2011). Identification of an antifungal peptide from Trapa natans fruits with inhibitory effects on Candida tropicalis biofilm formation. Peptides, 32(8), 1741–1747.CrossRefPubMedGoogle Scholar
  53. 53.
    Rodríguez-Martín, A., Acosta, R., Liddell, S., Núñez, F., Benito, M. J., & Asensio, M. A. (2010). Characterization of the novel antifungal protein PgAFP and the encoding gene of Penicillium chrysogenum. Peptides, 31(4), 541–547.CrossRefPubMedGoogle Scholar
  54. 54.
    Bormann, C., Baier, D., Horr, I., Raps, C., Berger, J., Jung, G., et al. (1999). Characterization of a novel, antifungal, chitin-binding protein from Streptomyces tendae Tu901 that interferes with growth polarity. Journal of Bacteriology, 181(24), 7421–7429.PubMedCentralPubMedGoogle Scholar
  55. 55.
    Urdangarin, M. C., Sigrid, N., Broekaert, W., & de la Canal, L. (2000). A defensin gene expressed in sunflower inflorescence. Plant Physiology and Biochemistry, 38(3), 253–258.CrossRefGoogle Scholar
  56. 56.
    Chiang, C. C., & Hadwiger, L. A. (1991). The Fusarium solani-induced expression of a pea gene family encoding high cysteine content proteins. Molecular Plant-Microbe Interactions, 4(4), 324–331.CrossRefPubMedGoogle Scholar
  57. 57.
    Milligan, S. B., & Gasser, C. S. (1995). Nature and regulation of pistil-expressed genes in tomato. Plant Molecular Biology, 28(4), 691–711.CrossRefPubMedGoogle Scholar
  58. 58.
    de Beer, A., & Vivier, M. A. (2011). Four plant defensins from an indigenous South African Brassicaceae species display divergent activities against two test pathogens despite high sequence similarity in the encoding genes. BMC Research Notes, 4(1), 459.CrossRefPubMedCentralPubMedGoogle Scholar
  59. 59.
    Terras, F. R. G., Torrekens, S., Van Leuven, F., Osborn, R. W., Vanderleyden, J., Cammue, B. P., et al. (1993). A new family of basic cysteine-rich plant antifungal proteins from Brassicaceae species. FEBS Letters, 316(3), 233–240.CrossRefPubMedGoogle Scholar
  60. 60.
    Terras, F. R., Eggermont, K., Kovaleva, V., Raikhel, N. V., Osborn, R. W., Kester, A., et al. (1995). Small cysteine-rich antifungal proteins from radish: their role in host defense. Plant Cell, 7(5), 573–588.CrossRefPubMedCentralPubMedGoogle Scholar
  61. 61.
    Aluru, M., Curry, J., & O’Connell, M. A. (1999). The electronic plant gene register. Plant Physiology, 120(2), 633–635.CrossRefGoogle Scholar
  62. 62.
    Koo, J. C., Lee, S. Y., Chun, H. J., Cheong, Y. H., Choi, J. S., Kawabata, S. I., et al. (1998). Two hevein homologs isolated from the seed of Pharbitis nil L. exhibit potent antifungal activity. Biochimica et Biophysica Acta, 1382(1), 80–90.CrossRefPubMedGoogle Scholar
  63. 63.
    Portieles, R., Ayra, C., Gonzalez, E., Gallo, A., Rodriguez, R., Chacón, O., et al. (2010). NmDef02, a novel antimicrobial gene isolated from Nicotiana megalosiphon confers high-level pathogen resistance under greenhouse and field conditions. Plant Biotechnology Journal, 8(6), 678–690.CrossRefPubMedGoogle Scholar
  64. 64.
    Gu, Q., Kawata, E. E., Morse, M. J., Wu, H. M., & Cheung, A. Y. (1992). A flower-specific cDNA encoding a novel thionin in tobacco. Molecular and General Genetics, 234(1), 89–96.PubMedGoogle Scholar
  65. 65.
    De-Paula, V. S., Razzera, G., Medeiros, L., Miyamoto, C. A., Almeida, M. S., Kurtenbach, E., et al. (2008). Evolutionary relationship between defensins in the Poaceae family strengthened by the characterization of new sugarcane defensins. Plant Molecular Biology, 68(4–5), 321–335.CrossRefPubMedGoogle Scholar
  66. 66.
    Lugardon, K., Chasserot-Golaz, S., Kieffer, A. E., Maget-Dana, R., Nullans, G., Kieffer, B., et al. (2001). Structural and biological characterization of chromofungin, the antifungal chromogranin A-(47-66)-derived peptide. Journal of Biological Chemistry, 276(38), 35875–35882.CrossRefPubMedGoogle Scholar
  67. 67.
    Xu, L., Lal, K., & Pollock, J. J. (1992). Histatins 2 and 4 are autoproteolytic degradation products of human parotid saliva. Oral Microbiology and Immunology, 7(2), 127–128.CrossRefPubMedGoogle Scholar
  68. 68.
    Marcus, J. P., Green, J. L., Goulter, K. C., & Manners, J. M. (1999). A family of antimicrobial peptides is produced by processing of a 7S globulin protein in Macadamia integrifolia kernels. The Plant Journal, 19(6), 699–710.CrossRefPubMedGoogle Scholar
  69. 69.
    Gao, A. G., Hakimi, S. M., Mittanck, C. A., Wu, Y., Woerner, B. M., Stark, D. M., et al. (2000). Fungal pathogen protection in potato by expression of a plant defensin peptide. Nature Biotechnology, 18(12), 1307–1310.CrossRefPubMedGoogle Scholar
  70. 70.
    de Beer, A., & Vivier, M. A. (2008). Vv-AMP1, a ripening induced peptide from Vitis vinifera shows strong antifungal activity. BMC Plant Biology, 8(1), 75.CrossRefPubMedCentralPubMedGoogle Scholar
  71. 71.
    Bloch, C, Jr, & Richardson, M. (1991). A new family of small (5 kDa) protein inhibitors of insect alpha-amylases from seeds or sorghum (Sorghum bicolar (L) Moench) have sequence homologies with wheat gamma-purothionins. FEBS Letters, 279(1), 101–104.CrossRefPubMedGoogle Scholar
  72. 72.
    Bloch, C, Jr, Patel, S. U., Baud, F., Zvelebil, M. J., Carr, M. D., Sadler, P. J., et al. (1998). 1H NMR structure of an antifungal gamma-thionin protein SIalpha1: similarity to scorpion toxins. Proteins, 32(3), 334–349.CrossRefPubMedGoogle Scholar
  73. 73.
    Gun Lee, D., Shin, S. Y., Maeng, C. Y., Jin, Z. Z., Kim, K. L., & Hahm, K. S. (1999). Isolation and characterization of a novel antifungal peptide from Aspergillus niger. Biochemical and Biophysical Research Communications, 263(3), 646–651.CrossRefPubMedGoogle Scholar
  74. 74.
    Ekramoddoullah, A. K., Liu, J. J., & Zamani, A. (2006). Cloning and Characterization of a Putative Antifungal Peptide Gene (Pm-AMP1) in Pinus monticola. Phytopathology, 96(2), 164–170.CrossRefPubMedGoogle Scholar
  75. 75.
    Mandal, S. M. (2012). A novel hydroxyproline rich glycopeptide from pericarp of Datura stramonium: proficiently eradicate the biofilm of antifungals resistant Candida albicans. Biopolymers, 98(4), 332–337.CrossRefPubMedGoogle Scholar
  76. 76.
    Hwang, J. S., Lee, J., Kim, Y. J., Bang, H. S., Yun, E. Y., Kim, S. R., et al. (2009). Isolation and Characterization of a Defensin-Like Peptide (Coprisin) from the Dung Beetle, Copris tripartitus. International Journal of Peptides. doi:10.1155/2009/136284.PubMedCentralPubMedGoogle Scholar
  77. 77.
    Lee, S. Y., Moon, H. J., Kurata, S., Natori, S., & Lee, B. L. (1995). Purification and cDNA cloning of an antifungal protein from the hemolymph of Holotrichia diomphalia larvae. Biological &/and Pharmaceutical Bulletin, 18(8), 1049–1052.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Carlos Polanco
    • 1
    • 2
  • José Lino Samaniego-Mendoza
    • 1
    • 2
  • Thomas Buhse
    • 3
  • Jorge Alberto Castañón-González
    • 1
  • Marili Leopold-Sordo
    • 1
  1. 1.Facultad de Ciencias de la SaludUniversidad AnáhuacHuixquilucanMexico
  2. 2.Departamento de Matemáticas, Facultad de CienciasUniversidad Nacional Autónoma de MéxicoD.FMexico
  3. 3.Centro de Investigaciones QuímicasUniversidad Autónoma del Estado de MorelosCuernavacaMexico

Personalised recommendations