Advertisement

Cell Biochemistry and Biophysics

, Volume 69, Issue 2, pp 319–325 | Cite as

Tumor-Suppressing Effects of miR-141 in Human Osteosarcoma

  • Haidong Xu
  • Qiang Mei
  • Chengjie Xiong
  • Jianning ZhaoEmail author
Original Paper

Abstract

Osteosarcoma is the most common primary malignancy to arise from bone. The pathogenesis of osteosarcoma is unclear, and new therapy molecular target is needed. The miRNAs researched suggested that miRNAs are involved in the pathogenesis of osteosarcoma. MiR-141, which belong to miR-200 family, take a part in tumorigenesis. However, the role of miR-141 in the pathogenesis of osteosarcoma remained unclear. In this study, we focused on the miR-141 in osteosarcoma and found that the expression of miR-141 is lower in osteosarcoma. Overexpression of miR-141 not only inhibits osteosarcoma cell proliferation but also induces cell apoptosis. It is estimated that miR-141 played its role via ZEB1 and ZEB2. In all, miR-141 played a osteosarcoma-suppressing role via ZEB1 and ZEB2. Our finding may elucidate the miRNAs mechanism in osteosarcoma and provide a new molecule target for osteosarcoma therapy.

Keywords

Human osteosarcoma miR-141 ZEB1 ZEB2 Osteosarcoma therapy 

References

  1. 1.
    Mirabello, L., Troisi, R. J., & Savage, S. A. (2009). Osteosarcoma incidence and survival rates from 1973 to 2004: Data from the surveillance, epidemiology, and end results program. Cancer, 115(7), 1531–1543.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Bielack, S. S., Kempf-Bielack, B., Delling, G., Exner, G. U., Flege, S., Helmke, K., et al. (2002). Prognostic factors in high-grade osteosarcoma of the extremities or trunk: An analysis of 1,702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols. Journal of Clinical Oncology, 20(3), 776–790.PubMedCrossRefGoogle Scholar
  3. 3.
    Lewis, V. O. (2009). What’s new in musculoskeletal oncology. Journal of Bone and Joint Surgery American Volume, 91(6), 1546–1556.CrossRefGoogle Scholar
  4. 4.
    Meyers, P. A., Schwartz, C. L., Krailo, M., Kleinerman, E. S., Betcher, D., Bernstein, M. L., et al. (2005). Osteosarcoma: A randomized, prospective trial of the addition of ifosfamide and/or muramyl tripeptide to cisplatin, doxorubicin, and high-dose methotrexate. Journal of Clinical Oncology, 23(9), 2004–2011.PubMedCrossRefGoogle Scholar
  5. 5.
    Cho, Y., Jung, G. H., Chung, S. H., Kim, J. Y., Choi, Y., & Kim, J. D. (2011). Long-term survivals of stage IIb osteosarcoma: A 20-year experience in a single institution. Clinics in Orthopedic Surgery, 3(1), 48–54.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Tsuchiya, H., Tomita, K., Mori, Y., Asada, N., Morinaga, T., Kitano, S., et al. (1998). Caffeine-assisted chemotherapy and minimized tumor excision for nonmetastatic osteosarcoma. Anticancer Research, 18(1B), 657–666.PubMedGoogle Scholar
  7. 7.
    Bolling, T., Schuller, P., Distelmaier, B., Schuck, A., Ernst, I., Gosheger, G., et al. (2008). Perioperative high-dose rate brachytherapy using a bendy applicator (flab): Treatment results of 74 patients. Anticancer Research, 28(6B), 3885–3890.PubMedGoogle Scholar
  8. 8.
    Kim, V. N., Han, J., & Siomi, M. C. (2009). Biogenesis of small RNAs in animals. Nature Reviews Molecular Cell Biology, 10(2), 39–126.CrossRefGoogle Scholar
  9. 9.
    Bartel, D. P. (2009). MicroRNAs: Target recognition and regulatory functions. Cell, 136(2), 215–233.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Valencia-Sanchez, M. A., Liu, J., Hannon, G. J., & Parker, R. (2006). Control of translation and mRNA degradation by miRNAs and siRNAs. Genes & Development, 20(5), 515–524.CrossRefGoogle Scholar
  11. 11.
    Lewis, B. P., Burge, C. B., & Bartel, D. P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 120(1), 15–20.PubMedCrossRefGoogle Scholar
  12. 12.
    Griffiths-Jones, S., Saini, H. K., van Dongen, S., & Enright, A. J. (2008). miRBase: Tools for microRNA genomics. Nucleic Acids Research, 36, D154–D158.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Mizuno, Y., Yagi, K., Tokuzawa, Y., Kanesaki-Yatsuka, Y., Suda, T., Katagiri, T., et al. (2008). miR-125b inhibits osteoblastic differentiation by down-regulation of cell proliferation. Biochemical and Biophysical Research Communications, 368(2), 267–272.PubMedCrossRefGoogle Scholar
  14. 14.
    Luzi, E., Marini, F., Sala, S. C., Tognarini, I., Galli, G., & Brandi, M. L. (2008). Osteogenic differentiation of human adipose tissue-derived stem cells is modulated by the miR-26a targeting of the SMAD1 transcription factor. Journal of Bone and Mineral Research, 23(2), 287–295.PubMedCrossRefGoogle Scholar
  15. 15.
    Sugatani, T., & Hruska, K. A. (2007). MicroRNA-223 is a key factor in osteoclast differentiation. Journal of Cellular Biochemistry, 101(4), 996–999.PubMedCrossRefGoogle Scholar
  16. 16.
    Itoh, T., Nozawa, Y., & Akao, Y. (2009). MicroRNA-141 and -200a are involved in bone morphogenetic protein-2-induced mouse pre-osteoblast differentiation by targeting distal-less homeobox 5. Journal of Biological Chemistry, 284(29), 19272–19279.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Mateescu, B., Batista, L., Cardon, M., Gruosso, T., de Feraudy, Y., Mariani, O., et al. (2011). miR-141 and miR-200a act on ovarian tumorigenesis by controlling oxidative stress response. Nature Medicine, 17(12), 1627–1635.PubMedCrossRefGoogle Scholar
  18. 18.
    Hao, J., Zhang, S., Zhou, Y., Liu, C., Hu, X., & Shao, C. (2011). MicroRNA 421 suppresses DPC4/Smad4 in pancreatic cancer. Biochemical and Biophysical Research Communications, 406(4), 552–557.PubMedCrossRefGoogle Scholar
  19. 19.
    Lu, J., Wen, M., Huang, Y., He, X., Wang, Y., Wu, Q., et al. (2013). C2ORF40 suppresses breast cancer cell proliferation and invasion through modulating expression of M phase cell cycle genes. Epigenetics, 8(6), 571–583.PubMedCrossRefGoogle Scholar
  20. 20.
    Li, D., Liu, X., Lin, L., Hou, J., Li, N., Wang, C., et al. (2011). MicroRNA-99a inhibits hepatocellular carcinoma growth and correlates with prognosis of patients with hepatocellular carcinoma. Journal of Biological Chemistry, 286(42), 36677–36685.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Coronnello, C., Benos, P. V., & Comi, R. (2013). Combinatorial microRNA target prediction tool. Nucleic Acids Research, 41, W159–W164.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    John, B., Enright, A. J., Aravin, A., Tuschl, T., Sander, C., & Marks, D. S. (2004). Human MicroRNA targets. PLoS Biology, 2(11), e363.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Lewis, B. P., Shih, I. H., Jones-Rhoades, M. W., Bartel, D. P., & Burge, C. B. (2003). Prediction of mammalian microRNA targets. Cell, 115(7), 787–798.PubMedCrossRefGoogle Scholar
  24. 24.
    Megraw, M., Sethupathy, P., Corda, B., & Hatzigeorgiou, A. G. (2007). miRGen: A database for the study of animal microRNA genomic organization and function. Nucleic Acids Research, 35, D149–D155.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Alexiou, P., Vergoulis, T., Gleditzsch, M., Prekas, G., Dalamagas, T., Megraw, M., et al. (2010). miRGen 2.0: A database of microRNA genomic information and regulation. Nucleic Acids Research, 38, D137–D141.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Jones, K. B., Salah, Z., Del Mare, S., Galasso, M., Gaudio, E., Nuovo, G. J., et al. (2012). miRNA signatures associate with pathogenesis and progression of osteosarcoma. Cancer Research, 72(7), 1865–1877.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Hurteau, G. J., Carlson, J. A., Spivack, S. D., & Brock, G. J. (2007). Overexpression of the microRNA hsa-miR-200c leads to reduced expression of transcription factor 8 and increased expression of E-cadherin. Cancer Research, 67(17), 7972–7976.PubMedCrossRefGoogle Scholar
  28. 28.
    Bracken, C. P., Gregory, P. A., Kolesnikoff, N., Bert, A. G., Wang, J., Shannon, M. F., et al. (2008). A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Research, 68(19), 7846–7854.PubMedCrossRefGoogle Scholar
  29. 29.
    Burk, U., Schubert, J., Wellner, U., Schmalhofer, O., Vincan, E., Spaderna, S., et al. (2008). A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Reports, 9(6), 582–589.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Gregory, P. A., Bert, A. G., Paterson, E. L., Barry, S. C., Tsykin, A., Farshid, G., et al. (2008). The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nature Cell Biology, 10(5), 593–601.PubMedCrossRefGoogle Scholar
  31. 31.
    Korpal, M., Lee, E. S., Hu, G., & Kang, Y. (2008). The miR-200 family inhibits epithelial–mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. Journal of Biological Chemistry, 283(22), 14910–14914.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Park, S. M., Gaur, A. B., Lengyel, E., & Peter, M. E. (2008). The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes & Development, 22(7), 894–907.CrossRefGoogle Scholar
  33. 33.
    Shimono, Y., Zabala, M., Cho, R. W., Lobo, N., Dalerba, P., Qian, D., et al. (2009). Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell, 138(3), 592–603.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Wellner, U., Schubert, J., Burk, U. C., Schmalhofer, O., Zhu, F., Sonntag, A., et al. (2009). The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nature Cell Biology, 11(12), 1487–1495.PubMedCrossRefGoogle Scholar
  35. 35.
    Iliopoulos, D., Lindahl-Allen, M., Polytarchou, C., Hirsch, H. A., Tsichlis, P. N., & Struhl, K. (2010). Loss of miR-200 inhibition of Suz12 leads to polycomb-mediated repression required for the formation and maintenance of cancer stem cells. Molecular Cell, 39(5), 761–772.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Schickel, R., Park, S. M., Murmann, A. E., & Peter, M. E. (2010). miR-200c regulates induction of apoptosis through CD95 by targeting FAP-1. Molecular Cell, 38(6), 908–915.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Chang, C. J., Chao, C. H., Xia, W., Yang, J. Y., Xiong, Y., Li, C. W., et al. (2011). p53 Regulates epithelial–mesenchymal transition and stem cell properties through modulating miRNAs. Nature Cell Biology, 13(3), 317–323.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Kim, T., Veronese, A., Pichiorri, F., Lee, T. J., Jeon, Y. J., Volinia, S., et al. (2011). p53 Regulates epithelial–mesenchymal transition through microRNAs targeting ZEB1 and ZEB2. Journal of Experimental Medicine, 208(5), 875–883.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Haidong Xu
    • 1
  • Qiang Mei
    • 2
  • Chengjie Xiong
    • 3
  • Jianning Zhao
    • 1
    Email author
  1. 1.Department of Orthopedics of Jinling HospitalNanjing University, School of MedicineNanjingChina
  2. 2.The 169th HospitalHunan Normal University School of MedicineChangshaChina
  3. 3.Wuhan General Hospital of Guangzhou Military Area CommandWuhanChina

Personalised recommendations