Cell Biochemistry and Biophysics

, Volume 69, Issue 1, pp 47–54 | Cite as

The Time-Dependent Manner of Sinusoidal Electromagnetic Fields on Rat Bone Marrow Mesenchymal Stem Cells Proliferation, Differentiation, and Mineralization

  • Ming-Yu Song
  • Ji-Zhe Yu
  • Dong-Ming Zhao
  • Sheng Wei
  • Yang Liu
  • Yue-Ming Hu
  • Wen-Chun Zhao
  • Yong Yang
  • Hua Wu
Original Paper

Abstract

Electromagnetic fields (EMFs) are used clinically to promote fracture healing and slow down osteoporosis without knowledge of optimal parameters and underlying principles. In the present study, we investigate the effects of irritation for different durations with 15 Hz 1 mT sinusoidal EMFs (SEMFs) on rat bone marrow mesenchymal stem cells (BMSCs) proliferation, differentiation, and mineralization potentials. Our results show that SEMFs irritation promote rat BMSCs proliferation in a time-dependent manner, and the expression of osteogenic gen [Cbfa 1/RUNX2, bone sialoprotein (BSP), osteopontin (OPN)], alkaline phosphatase activity, and calcium deposition were enhanced after SEMFs treatment depending on the time duration of treatment. To determine the role of MEK/ERK signaling pathway, U0126, a MEK/ERK inhibitor was used. It can suppress rat BMSCs’ proliferation with or without SEMF exposure, and partly attenuate the expression of osteogenesis related proteins (RUNX2, BSP, OPN) which were improved by SEMF. This finding suggests that the effects of SEMF on rat BMSCs’ proliferation differentiation and mineralization are time duration dependent and MEK/ERK signaling pathway plays important role.

Keywords

Sinusoidal electromagnetic fields Bone marrow mesenchymal stem cells Differentiation Proliferation 

References

  1. 1.
    Liu, H. F., Yang, L., He, H. C., Zhou, J., Liu, Y., Wang, C. Y., et al. (2013). Pulsed electromagnetic fields on postmenopausal osteoporosis in southwest China: A randomized, active-controlled clinical trial. Bioelectromagnetics, 34(4), 323–332. doi:10.1002/bem.21770.PubMedCrossRefGoogle Scholar
  2. 2.
    Boyette, M. Y., & Herrera-Soto, J. A. (2012). Treatment of delayed and nonunited fractures and osteotomies with pulsed electromagnetic field in children and adolescents. Orthopedics, 35, e1051–e1055.PubMedCrossRefGoogle Scholar
  3. 3.
    Assiotis, A., Sachinis, N. P., & Chalidis, B. E. (2012). Pulsed electromagnetic fields for the treatment of tibial delayed unions and nonunions. A prospective clinical study and review of the literature. Journal of Orthopaedic Surgery and Research, 7, 24.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Shi, H. F., Xiong, J., Chen, Y. X., Wang, J. F., Qiu, X. S., Wang, Y. H., et al. (2013). Early application of pulsed electromagnetic field in the treatment of postoperative delayed union of long-bone fractures: A prospective randomized controlled study. BMC Musculoskeletal Disorder, 14, 35.CrossRefGoogle Scholar
  5. 5.
    Zhou, J., He, H., Yang, L., Chen, S., Guo, H., Xia, L., et al. (2012). Effects of pulsed electromagnetic fields on bone mass and Wnt/β-catenin signaling pathway in ovariectomized rats. Archives of Medical Research, 43(4), 274–282. doi:10.1016/j.arcmed.2012.06.002.PubMedCrossRefGoogle Scholar
  6. 6.
    Skerry, T. M., Pead, M. J., & Lanyon, L. E. (1991). Modulation of bone loss during disuse by pulsed electromagnetic fields. Journal of Orthopaedic Research, 9, 600–608.PubMedCrossRefGoogle Scholar
  7. 7.
    Chao, E. Y., Inoue, N., Koo, T. K., & Kim, Y. H. (2004). Biomechanical considerations of fracture treatment and bone quality maintenance in elderly patients and patients with osteoporosis. Clinical Orthopaedics and Related Research, 425, 12–25.PubMedCrossRefGoogle Scholar
  8. 8.
    Funk, R. H., Monsees, T., & Ozkucur, N. (2009). Electromagnetic effects—From cell biology to medicine. Progress in Histochemistry and Cytochemistry, 43, 177–264.PubMedCrossRefGoogle Scholar
  9. 9.
    Zhong, C., Zhang, X., Xu, Z., & He, R. (2012). Effects of low-intensity electromagnetic fields on the proliferation and differentiation of cultured mouse bone marrow stromal cells. Physical Therapy, 92, 1208–1219.PubMedCrossRefGoogle Scholar
  10. 10.
    Sun, L. Y., Hsieh, D. K., Lin, P. C., Chiu, H. T., & Chiou, T. W. (2010). Pulsed electromagnetic fields accelerate proliferation and osteogenic gene expression in human bone marrow mesenchymal stem cells during osteogenic differentiation. Bioelectromagnetics, 31, 209–219.PubMedCrossRefGoogle Scholar
  11. 11.
    Jansen, J. H., van der Jagt, O. P., Punt, B. J., Verhaar, J. A., van Leeuwen, J. P., Weinans, H., et al. (2010). Stimulation of osteogenic differentiation in human osteoprogenitor cells by pulsed electromagnetic fields: An in vitro study. BMC Musculoskeletal Disorder, 11, 188.CrossRefGoogle Scholar
  12. 12.
    Zhou, J., Ming, L. G., Ge, B. F., Wang, J. Q., Zhu, R. Q., Wei, Z., et al. (2011). Effects of 50 Hz sinusoidal electromagnetic fields of different intensities on proliferation, differentiation and mineralization potentials of rat osteoblasts. Bone, 49, 753–761.PubMedCrossRefGoogle Scholar
  13. 13.
    Yan, J., Dong, L., Zhang, B., & Qi, N. (2010). Effects of extremely low-frequency magnetic field on growth and differentiation of human mesenchymal stem cells. Electromagnetic Biology and Medicine, 29, 165–176.PubMedCrossRefGoogle Scholar
  14. 14.
    Zhang, X., Zhang, J., Qu, X., & Wen, J. (2007). Effects of different extremely low-frequency electromagnetic fields on osteoblasts. Electromagnetic Biology and Medicine, 26, 167–177.PubMedCrossRefGoogle Scholar
  15. 15.
    Ivancsits, S., Pilger, A., Diem, E., Jahn, O., & Rudiger, H. W. (2005). Cell type-specific genotoxic effects of intermittent extremely low-frequency electromagnetic fields. Mutation Research, 583, 184–188.PubMedCrossRefGoogle Scholar
  16. 16.
    Jaiswal, R. K., Jaiswal, N., Bruder, S. P., Mbalaviele, G., Marshak, D. R., & Pittenger, M. F. (2000). Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase. Journal of Biological Chemistry, 275, 9645–9652.PubMedCrossRefGoogle Scholar
  17. 17.
    Ge, C., Xiao, G., Jiang, D., & Franceschi, R. T. (2007). Critical role of the extracellular signal-regulated kinase-MAPK pathway in osteoblast differentiation and skeletal development. Journal of Cell Biology, 176, 709–718.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Sreejit, P., Dilip, K. B., & Verma, R. S. (2012). Generation of mesenchymal stem cell lines from murine bone marrow. Cell and Tissue Research, 350, 55–68.PubMedCrossRefGoogle Scholar
  19. 19.
    Tondreau, T., Lagneaux, L., Dejeneffe, M., Delforge, A., Massy, M., Mortier, C., et al. (2004). Isolation of BM mesenchymal stem cells by plastic adhesion or negative selection: Phenotype, proliferation kinetics and differentiation potential. Cytotherapy, 6, 372–379.PubMedCrossRefGoogle Scholar
  20. 20.
    Beyer, N. N., & Da, S. M. L. (2006). Mesenchymal stem cells: Isolation, in vitro expansion and characterization. The Handbook of Experimental Pharmacology, 174, 249–282.CrossRefGoogle Scholar
  21. 21.
    Robinson, M. J., & Cobb, M. H. (1997). Mitogen-activated protein kinase pathways. Current Opinion in Cell Biology, 9, 180–186.PubMedCrossRefGoogle Scholar
  22. 22.
    Griffin, X. L., Costa, M. L., Parsons, N., & Smith, N. (2011). Electromagnetic field stimulation for treating delayed union or non-union of long bone fractures in adults. Cochrane Database of Systematic Reviews, 4, CD008471. doi:10.1002/14651858.CD008471.pub2.PubMedGoogle Scholar
  23. 23.
    Gnecchi, M., & Melo, L. G. (2009). Bone marrow-derived mesenchymal stem cells: Isolation, expansion, characterization, viral transduction, and production of conditioned medium. Methods in Molecular Biology, 482, 281–294.PubMedCrossRefGoogle Scholar
  24. 24.
    Comite, P., Cobianchi, L., Avanzini, M. A., Zonta, S., Mantelli, M., Achille, V., et al. (2010). Isolation and ex vivo expansion of bone marrow-derived porcine mesenchymal stromal cells: Potential for application in an experimental model of solid organ transplantation in large animals. Transplantation Proceedings, 42, 1341–1343.PubMedCrossRefGoogle Scholar
  25. 25.
    Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8, 315–317.PubMedCrossRefGoogle Scholar
  26. 26.
    Sun, L. Y., Hsieh, D. K., Yu, T. C., Chiu, H. T., Lu, S. F., Luo, G. H., et al. (2009). Effect of pulsed electromagnetic field on the proliferation and differentiation potential of human bone marrow mesenchymal stem cells. Bioelectromagnetics, 30, 251–260.PubMedCrossRefGoogle Scholar
  27. 27.
    Diniz, P., Soejima, K., & Ito, G. (2002). Nitric oxide mediates the effects of pulsed electromagnetic field stimulation on the osteoblast proliferation and differentiation. Nitric Oxide, 7, 18–23.PubMedCrossRefGoogle Scholar
  28. 28.
    Esposito, M., Lucariello, A., Riccio, I., Riccio, V., Esposito, V., & Riccardi, G. (2012). Differentiation of human osteoprogenitor cells increases after treatment with pulsed electromagnetic fields. In Vivo, 26, 299–304.PubMedGoogle Scholar
  29. 29.
    Zhong, C., Zhang, X., Xu, Z., & He, R. (2012). Effects of low-intensity electromagnetic fields on the proliferation and differentiation of cultured mouse bone marrow stromal cells. Physical Therapy, 92(9), 1208–1219. doi:10.2522/ptj.20110224.PubMedCrossRefGoogle Scholar
  30. 30.
    de Girolamo, L., Stanco, D., Galliera, E., Vigano, M., Colombini, A., Setti, S., et al. (2013). Low frequency pulsed electromagnetic field affects proliferation, tissue-specific gene expression, and cytokines release of human tendon cells. Cell Biochemistry and Biophysics, 66(3), 697–708. doi:10.1007/s12013-013-9514-y.PubMedCrossRefGoogle Scholar
  31. 31.
    Ducy, P., Zhang, R., Geoffroy, V., Ridall, A. L., & Karsenty, G. (1997). Osf2/Cbfa1: A transcriptional activator of osteoblast differentiation. Cell, 89, 747–754.PubMedCrossRefGoogle Scholar
  32. 32.
    Harada, H., Tagashira, S., Fujiwara, M., Ogawa, S., Katsumata, T., Yamaguchi, A., et al. (1999). Cbfa1 isoforms exert functional differences in osteoblast differentiation. Journal of Biological Chemistry, 274, 6972–6978.PubMedCrossRefGoogle Scholar
  33. 33.
    Jimenez, M. J., Balbin, M., Lopez, J. M., Alvarez, J., Komori, T., & Lopez-Otin, C. (1999). Collagenase 3 is a target of Cbfa1, a transcription factor of the runt gene family involved in bone formation. Molecular and Cellular Biology, 19, 4431–4442.PubMedCentralPubMedGoogle Scholar
  34. 34.
    Ziros, P. G., Gil, A. P., Georgakopoulos, T., Habeos, I., Kletsas, D., Basdra, E. K., et al. (2002). The bone-specific transcriptional regulator Cbfa1 is a target of mechanical signals in osteoblastic cells. Journal of Biological Chemistry, 277, 23934–23941.PubMedCrossRefGoogle Scholar
  35. 35.
    Orimo, H., & Shimada, T. (2008). The role of tissue-nonspecific alkaline phosphatase in the phosphate-induced activation of alkaline phosphatase and mineralization in SaOS-2 human osteoblast-like cells. Molecular and Cellular Biochemistry, 315, 51–60.PubMedCrossRefGoogle Scholar
  36. 36.
    Balcerzak, M., Hamade, E., Zhang, L., Pikula, S., Azzar, G., Radisson, J., et al. (2003). The roles of annexins and alkaline phosphatase in mineralization process. Acta Biochimica Polonica, 50, 1019–1038.PubMedGoogle Scholar
  37. 37.
    Schonwasser, D. C., Marais, R. M., Marshall, C. J., & Parker, P. J. (1998). Activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway by conventional, novel, and atypical protein kinase C isotypes. Molecular and Cellular Biology, 18, 790–798.PubMedCentralPubMedGoogle Scholar
  38. 38.
    Nie, K., & Henderson, A. (2003). MAP kinase activation in cells exposed to a 60 Hz electromagnetic field. Journal of Cellular Biochemistry, 90, 1197–1206.PubMedCrossRefGoogle Scholar
  39. 39.
    Kovacic, P., & Somanathan, R. (2010). Electromagnetic fields: Mechanism, cell signaling, other bioprocesses, toxicity, radicals, antioxidants and beneficial effects. Journal of Receptors and Signal Transduction Research, 30, 214–226.CrossRefGoogle Scholar
  40. 40.
    Ke, X. Q., Sun, W. J., Lu, D. Q., Fu, Y. T., & Chiang, H. (2008). 50-Hz magnetic field induces EGF-receptor clustering and activates RAS. International Journal of Radiation Biology, 84, 413–420.PubMedCrossRefGoogle Scholar
  41. 41.
    Xiao, G., Jiang, D., Thomas, P., Benson, M. D., Guan, K., Karsenty, G., et al. (2000). MAPK pathways activate and phosphorylate the osteoblast-specific transcription factor, Cbfa1. Journal of Biological Chemistry, 275, 4453–4459.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Ming-Yu Song
    • 1
  • Ji-Zhe Yu
    • 1
  • Dong-Ming Zhao
    • 1
  • Sheng Wei
    • 1
  • Yang Liu
    • 1
  • Yue-Ming Hu
    • 1
  • Wen-Chun Zhao
    • 2
  • Yong Yang
    • 1
  • Hua Wu
    • 1
  1. 1.Department of Orthopedics, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
  2. 2.Navy University of EngineeringWuhanChina

Personalised recommendations