Cell Biochemistry and Biophysics

, Volume 69, Issue 1, pp 27–34 | Cite as

Hispidulin Induces Apoptosis Through Mitochondrial Dysfunction and Inhibition of P13k/Akt Signalling Pathway in HepG2 Cancer Cells

  • Hui Gao
  • Hui Wang
  • Jianjun Peng
Original Paper


Hispidulin is a flavonoid compound which is an active ingredient in a number of traditional Chinese medicinal herbs. However, it’s therapeutic activity remains poorly understood. The present study investigated the pro-apoptotic effects and mechanism by which Hispidulin induces apoptosis in human hepatoblastoma cancer (HepG2) cells. The results showed that Hispidulin induced cell death in a dose- and time-dependent manner in HepG2 cells whereas no toxic reaction was observed in normal human liver cells at indicated concentration. This study also demonstrated that Hispidulin induces apoptosis through mitochondrial dysfunction, which is characterized by decreased Bcl-2/Bax ratio, disrupted mitochondrial membrane potential and increased release of cytochrome C and activated capase-3. Our results also showed that mitochondrial dysfunction was triggered by Hispidulin-induced excessive ROS generation. Hispidulin also significantly inhibited Akt activation. ROS inhibitor NAC abrogated the inhibitory effect of Hispidulin on P13k/Akt signalling pathway and the proapoptotic effect in HepG2 cells. Our results demonstrate for the first time that Hispidulin induces apoptosis in HepG2 cells and suggested that the pro-apoptotic effect of Hispidulin was mediated through mitochondrial dysfunction and inhibition of P13k/Akt signalling pathway. Since no toxic effect was observed when normal liver cells were treated with Hispidulin, Hispidulin may have the potential to be used as therapeutic for liver cancer.


Hispidulin Apoptosis Mitochondrial stress P13k/Akt ROS 



This work was supported by the funds of Chongqing Normal University (No. 12XLB025).


  1. 1.
    Ferlay, J., Shin, H. R., Bray, F., Forman, D., Mathers, C., & Parkin, D. M. (2008). Estimates of worldwide burden of cancer in 2008: GLOBOCAN. International Journal of Cancer, 127(2010), 2893–2917.Google Scholar
  2. 2.
    Jemal, A., Bray, F., Center, M. M., Ferlay, J., Ward, E., & Forman, D. (2011). Global cancer statistics. CA: A Cancer Journal for Clinicians, 61, 69–90.Google Scholar
  3. 3.
    Andreana, L., Isgro, G., Marelli, L., Davies, N., Yu, D., Navalkissoor, S., et al. (2012). Treatment of hepatocellular carcinoma (HCC) by intra-arterial infusion of radio-emitter compounds: Trans-arterial radio-embolisation of HCC. Cancer Treatment Reviews, 38, 641–649.PubMedCrossRefGoogle Scholar
  4. 4.
    Thomas, M. B., O’Beirne, J. P., Furuse, J., Chan, A. T., Abou-Alfa, G., & Johnson, P. (2008). Systemic therapy for hepatocellular carcinoma: Cytotoxic chemotherapy, targeted therapy and immunotherapy. Annals of Surgical Oncology, 15, 1008–1014.PubMedCrossRefGoogle Scholar
  5. 5.
    Way, T. D., Lee, J. C., Kuo, D. H., Fan, L. L., Huang, C. H., Lin, H. Y., et al. (2010). Inhibition of epidermal growth factor receptor signaling by Saussurea involucrata, a rare traditional Chinese medicinal herb, in human hormone-resistant prostate cancer PC-3 cells. Journal of Agriculture and Food Chemistry, 58, 3356–3365.CrossRefGoogle Scholar
  6. 6.
    Yin, Y., Gong, F. Y., Wu, X. X., Sun, Y., Li, Y. H., Chen, T., et al. (2008). Anti-inflammatory and immunosuppressive effect of flavones isolated from Artemisia vestita. Journal of Ethnopharmacology, 120, 1–6.PubMedCrossRefGoogle Scholar
  7. 7.
    Kavvadias, D., Sand, P., Youdim, K. A., Qaiser, M. Z., Rice-Evans, C., Baur, R., et al. (2004). The flavone hispidulin, a benzodiazepine receptor ligand with positive allosteric properties, traverses the blood–brain barrier and exhibits anticonvulsive effects. British Journal of Pharmacology, 142, 811–820.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Tan, R. X., Lu, H., Wolfender, J. L., Yu, T. T., Zheng, W. F., Yang, L., et al. (1999). Mono- and sesquiterpenes and antifungal constituents from Artemisia species. Planta Medica, 65, 64–67.PubMedCrossRefGoogle Scholar
  9. 9.
    Nagao, T., Abe, F., Kinjo, J., & Okabe, H. (2002). Antiproliferative constituents in plants 10. Flavones from the leaves of Lantana montevidensis Briq. and consideration of structure-activity relationship. Biological and Pharmaceutical Bulletin, 25, 875–879.PubMedCrossRefGoogle Scholar
  10. 10.
    Chen, Y. T., Zheng, R. L., Jia, Z. J., & Ju, Y. (1990). Flavonoids as superoxide scavengers and antioxidants. Free Radical Biology and Medicine, 9, 19–21.PubMedCrossRefGoogle Scholar
  11. 11.
    Bourdillat, B., Delautier, D., Labat, C., Benveniste, J., Potier, P., & Brink, C. (1988). Mechanism of action of hispidulin, a natural flavone, on human platelets. Progress in Clinical and Biological Research, 280, 211–214.PubMedGoogle Scholar
  12. 12.
    Yang, J. M., Hung, C. M., Fu, C. N., Lee, J. C., Huang, C. H., Yang, M. H., et al. (2010). Hispidulin sensitizes human ovarian cancer cells to TRAIL-induced apoptosis by AMPK activation leading to Mcl-1 block in translation. Journal of Agriculture and Food Chemistry, 58, 10020–10026.CrossRefGoogle Scholar
  13. 13.
    Lin, Y. C., Hung, C. M., Tsai, J. C., Lee, J. C., Chen, Y. L., Wei, C. W., et al. (2010). Hispidulin potently inhibits human glioblastoma multiforme cells through activation of AMP-activated protein kinase (AMPK). Journal of Agriculture and Food Chemistry, 58, 9511–9517.CrossRefGoogle Scholar
  14. 14.
    He, L., Wu, Y., Lin, L., Wang, J., Chen, Y., Yi, Z., et al. (2011). Hispidulin, a small flavonoid molecule, suppresses the angiogenesis and growth of human pancreatic cancer by targeting vascular endothelial growth factor receptor 2-mediated PI3 K/Akt/mTOR signaling pathway. Cancer Science, 102, 219–225.PubMedCrossRefGoogle Scholar
  15. 15.
    Ou, H. C., Lee, W. J., Lee, S. D., Huang, C. Y., Chiu, T. H., Tsai, K. L., et al. (2010). Ellagic acid protects endothelial cells from oxidized low-density lipoprotein-induced apoptosis by modulating the PI3 K/Akt/eNOS pathway. Toxicology and Applied Pharmacology, 248, 134–143.PubMedCrossRefGoogle Scholar
  16. 16.
    Chen, X., Zhong, Z., Xu, Z., Chen, L., & Wang, Y. (2011). No protective effect of curcumin on hydrogen peroxide-induced cytotoxicity in HepG2 cells. Pharmacological Reports, 63, 724–732.PubMedCrossRefGoogle Scholar
  17. 17.
    Dabaghi-Barbosa, P., Mariante Rocha, A., Franco da Cruz Lima, A., Heleno de Oliveira, B., Benigna Martinelli de Oliveira, M., Gunilla Skare Carnieri, E., et al. (2005). Hispidulin: Antioxidant properties and effect on mitochondrial energy metabolism. Free Radical Research, 39, 1305–1315.PubMedCrossRefGoogle Scholar
  18. 18.
    Herrerias, T., Oliveira, A. A., Belem, M. L., Oliveira, B. H., Carnieri, E. G. S., Cadena, S. M. S. C., et al. (2010). Effects of natural flavones on membrane properties and citotoxicity of HeLa cells. Revista Brasileira de Farmacognosia, 20, 403–408.CrossRefGoogle Scholar
  19. 19.
    Khan, M., Zheng, B., Yi, F., Rasul, A., Gu, Z., Li, T., et al. (2012). Pseudolaric Acid B induces caspase-dependent and caspase-independent apoptosis in u87 glioblastoma cells. Evidence-Based Complementary and Alternative Medicine, 2012, 957568.PubMedCentralPubMedGoogle Scholar
  20. 20.
    Chou, T. H., & Liang, C. H. (2009). The molecular effects of aloe-emodin (AE)/liposome-AE on human nonmelanoma skin cancer cells and skin permeation. Chemical Research in Toxicology, 22, 2017–2028.PubMedCrossRefGoogle Scholar
  21. 21.
    Chen, G., Wang, K., Yang, B. Y., Tang, B., Chen, J. X., & Hua, Z. C. (2012). Synergistic antitumor activity of oridonin and arsenic trioxide on hepatocellular carcinoma cells. International Journal of Oncology, 40, 139–147.PubMedGoogle Scholar
  22. 22.
    Yuan, L., Wang, J., Xiao, H., Xiao, C., Wang, Y., & Liu, X. (2012). Isoorientin induces apoptosis through mitochondrial dysfunction and inhibition of PI3 K/Akt signaling pathway in HepG2 cancer cells. Toxicology and Applied Pharmacology, 265, 83–92.PubMedCrossRefGoogle Scholar
  23. 23.
    Wilson, J. F. (2005). Liver cancer on the rise. Annals of Internal Medicine, 142, 1029–1032.PubMedCrossRefGoogle Scholar
  24. 24.
    Li, S., Dong, P., Wang, J., Zhang, J., Gu, J., Wu, X., et al. (2010). Icariin, a natural flavonol glycoside, induces apoptosis in human hepatoma SMMC-7721 cells via a ROS/JNK-dependent mitochondrial pathway. Cancer Letters, 298, 222–230.PubMedCrossRefGoogle Scholar
  25. 25.
    Raza, H., John, A., & Benedict, S. (2011). Acetylsalicylic acid-induced oxidative stress, cell cycle arrest, apoptosis and mitochondrial dysfunction in human hepatoma HepG2 cells. European Journal of Pharmacology, 668, 15–24.PubMedCrossRefGoogle Scholar
  26. 26.
    Valdameri, G., Herrerias, T., Carnieri, E. G., Cadena, S. M., Martinez, G. R., & Rocha, M. E. (2010). Importance of the core structure of flavones in promoting inhibition of the mitochondrial respiratory chain. Chemico-Biological Interactions, 188, 52–58.PubMedCrossRefGoogle Scholar
  27. 27.
    Le Belle, J. E., Orozco, N. M., Paucar, A. A., Saxe, J. P., Mottahedeh, J., Pyle, A. D., et al. (2011). Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant manner. Cell Stem Cell, 8, 59–71.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Woo, J. H., Kim, Y. H., Choi, Y. J., Kim, D. G., Lee, K. S., Bae, J. H., et al. (2003). Molecular mechanisms of curcumin-induced cytotoxicity: Induction of apoptosis through generation of reactive oxygen species, down-regulation of Bcl-XL and IAP, the release of cytochrome C and inhibition of Akt. Carcinogenesis, 24, 1199–1208.PubMedCrossRefGoogle Scholar
  29. 29.
    Datta, S. R., Dudek, H., Tao, X., Masters, S., Fu, H., Gotoh, Y., et al. (1997). Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell, 91, 231–241.PubMedCrossRefGoogle Scholar
  30. 30.
    del Peso, L., Gonzalez-Garcia, M., Page, C., Herrera, R., & Nunez, G. (1997). Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science, 278, 687–689.PubMedCrossRefGoogle Scholar
  31. 31.
    Cho, D. H., Choi, Y. J., Jo, S. A., Ryou, J., Kim, J. Y., Chung, J., et al. (2006). Troglitazone acutely inhibits protein synthesis in endothelial cells via a novel mechanism involving protein phosphatase 2A-dependent p70 S6 kinase inhibition. American Journal of Physiology Cell Physiology, 291, C317–C326.PubMedCrossRefGoogle Scholar
  32. 32.
    Deeb, D., Jiang, H., Gao, X., Al-Holou, S., Danyluk, A. L., Dulchavsky, S. A., et al. (2007). Curcumin [1,7-bis(4-hydroxy-3-methoxyphenyl)-1-6-heptadine-3,5-dione; C21H20O6] sensitizes human prostate cancer cells to tumor necrosis factor-related apoptosis-inducing ligand/Apo2L-induced apoptosis by suppressing nuclear factor-kappaB via inhibition of the prosurvival Akt signaling pathway. Journal of Pharmacology and Experimental Therapeutics, 321, 616–625.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Medical CollegeQingdao UniversityQingdaoChina
  2. 2.The Hospital of the Prison of Shandong ProvinceJinanChina
  3. 3.College of Life SciencesChongqing Normal UniversityChongqingChina

Personalised recommendations