Cell Biochemistry and Biophysics

, Volume 68, Issue 2, pp 347–358 | Cite as

Effect of 3G Cell Phone Exposure with Computer Controlled 2-D Stepper Motor on Non-thermal Activation of the hsp27/p38MAPK Stress Pathway in Rat Brain

  • Kavindra Kumar Kesari
  • Ramovatar Meena
  • Jayprakash Nirala
  • Jitender Kumar
  • H. N. Verma
Original Paper


Cell phone radiation exposure and its biological interaction is the present concern of debate. Present study aimed to investigate the effect of 3G cell phone exposure with computer controlled 2-D stepper motor on 45-day-old male Wistar rat brain. Animals were exposed for 2 h a day for 60 days by using mobile phone with angular movement up to zero to 30°. The variation of the motor is restricted to 90° with respect to the horizontal plane, moving at a pre-determined rate of 2° per minute. Immediately after 60 days of exposure, animals were scarified and numbers of parameters (DNA double-strand break, micronuclei, caspase 3, apoptosis, DNA fragmentation, expression of stress-responsive genes) were performed. Result shows that microwave radiation emitted from 3G mobile phone significantly induced DNA strand breaks in brain. Meanwhile a significant increase in micronuclei, caspase 3 and apoptosis were also observed in exposed group (P < 0.05). Western blotting result shows that 3G mobile phone exposure causes a transient increase in phosphorylation of hsp27, hsp70, and p38 mitogen-activated protein kinase (p38MAPK), which leads to mitochondrial dysfunction-mediated cytochrome c release and subsequent activation of caspases, involved in the process of radiation-induced apoptotic cell death. Study shows that the oxidative stress is the main factor which activates a variety of cellular signal transduction pathways, among them the hsp27/p38MAPK is the pathway of principle stress response. Results conclude that 3G mobile phone radiations affect the brain function and cause several neurological disorders.


3G mobile phone Heat shock proteins Cell signaling pathway Apoptosis DNA strand break 



Authors are thankful to the Council for Scientific and Industrial Research [CSIR Project Ref. No. 37(1536)/12/EMR-II], New Delhi, for the financial assistance. Authors are also thankful to the reviewers of this paper for their important suggestions and corrections throughout the manuscript.


  1. 1.
    Tillmann, T., Ernst, H., Streckert, J., Zhou, Y., Taugner, F., Hansen, V., et al. (2010). Indication of cocarcinogenic potential of chronic UMTS-modulated radiofrequency exposure in an ethylnitrosourea mouse model. International Journal of Radiation Biology, 86(7), 529–541.PubMedCrossRefGoogle Scholar
  2. 2.
    Manti, L., Braselmann, H., Calabrese, M. L., Massa, R., Pugliese, M., Scampoli, P., et al. (2008). Effects of modulated microwave radiation at cellular telephone frequency (1.95 GHz) on X-ray-induced chromosome aberrations in human lymphocytes in vitro. Radiation Research, 169(5), 575–583.PubMedCrossRefGoogle Scholar
  3. 3.
    Nora, D. V., Tomasi, D., Wang, G. J., Vaska, P., Fowler, J. S., Telang, F., et al. (2011). Effects of cell phone radiofrequency signal exposure on brain glucose metabolism. Journal of the American Medical Association, 305(8), 808–814.CrossRefGoogle Scholar
  4. 4.
    Behari, J., & Nirala, J. P. (2012). SAR measurement due to mobile phone exposure in a simulated biological media. Electromagnetic Biology and Medicine, 31(3), 195–203.PubMedCrossRefGoogle Scholar
  5. 5.
    Khurana, V. G., Teo, C., Kundi, M., Hardell, L., & Carlberg, M. (2009). Cell phones and brain tumors: A review including the long-term epidemiologic data. Surgical Neurology, 72, 205–215.PubMedCrossRefGoogle Scholar
  6. 6.
    Kesari, K. K., Kumar, S., Nirala, J., Siddhiqui, M. H., & Behari, J. (2013). Biophysical evaluation of radiofrequency electromagnetic field effects on male reproductive pattern. Cell Biochemistry and Biophysics, 65(2), 85–96.PubMedCrossRefGoogle Scholar
  7. 7.
    Mausset, A. L., de Seze, R., Montpeyroux, F., & Privat, A. (2001). Effects of radiofrequency exposure on the GABAergic system in the rat cerebellum: Clues fromsemi-quantitative immunohistochemistry. Brain Research, 912, 33–46.PubMedCrossRefGoogle Scholar
  8. 8.
    Mausset-Bonnefont, A. L., Hirbec, H., Bonnefont, X., Privat, A., Vignon, J., & de Seze, R. (2004). Acute exposure to GSM 900-MHz electromagnetic fields induces glial reactivity and biochemical modifications in the rat brain. Neurobiology, 17, 445–454.Google Scholar
  9. 9.
    Odaci, E., Bas, O., & Kaplan, S. (2008). Effects of prenatal exposure to a 900 megahertz electromagnetic field on the dentate gyrus of rats: A stereological and histopathological study. Brain Research, 1238, 224–229.PubMedCrossRefGoogle Scholar
  10. 10.
    Dimbylow, P. J., & Mann, S. M. (1994). SAR calculations in an anatomically realistic model of the head for mobile communication transceivers at 900 MHz and 1.8 GHz. Physical Medical Biology, 39, 1537–1544.CrossRefGoogle Scholar
  11. 11.
    Rothman, K. J., Chou, C. K., Morgan, R., Balzano, Q., Guy, A. W., & Funch, D. P. (1996). Assessment of cellular telephone and other radio frequency exposure for epidemiologic research. Epidemiology, 7, 291–298.PubMedCrossRefGoogle Scholar
  12. 12.
    Trunk, A., Stefanics, G., Zentai, N., Kovács-Bálint, Z., Thuróczy, G., & Hernádi, I. (2013). No effects of a single 3G UMTS mobile phone exposure on spontaneous EEG activity, ERP correlates, and automatic deviance detection. Bioelectromagnetics, 34(1), 31–42.PubMedCrossRefGoogle Scholar
  13. 13.
    Danker-Hopfe, H., Dorn, H., Bahr, A., Anderer, P., & Sauter, C. (2011). Effects of electromagnetic fields emitted by mobile phones (GSM 900 and WCDMA/UMTS) on the macrostructure of sleep. Journal of Sleep Research, 20(1), 73–81.PubMedCrossRefGoogle Scholar
  14. 14.
    Kesari, K. K., Kumar, S., & Behari, J. (2011). 900-MHz microwave radiation promotes oxidation in rat brain. Electromagnetic Biology and Medicine, 30(4), 219–234.PubMedCrossRefGoogle Scholar
  15. 15.
    Kesari, K. K., Kumar, S., & Behari, J. (2012). Pathophysiology of microwave radiation: Effect on rat brain. Applied Biochemistry and Biotechnology, 166(2), 379–388.PubMedCrossRefGoogle Scholar
  16. 16.
    Barth, A., Winker, R., Ponocny-Seliger, E., Mayrhofer, W., Ponocny, I., Sauter, C., et al. (2008). A meta-analysis for neurobehavioural effects due to electromagnetic field exposure emitted by GSM mobile phones. Occupational Environment and Medicine, 65(5), 342–346.CrossRefGoogle Scholar
  17. 17.
    Kesari, K. K., Siddiqui, M. H., Meena, R., Verma, H. N., & Kumar, S. (2013). Cell phone radiation exposure on brain and associated biological systems. Indian Journal of Experimental Biology, 51(3), 187–200.PubMedGoogle Scholar
  18. 18.
    Kesari, K. K., Behari, J., & Kumar, S. (2010). Mutagenic response of 2.45 GHz radiation exposure on rat brain. International Journal of Radiation Biology, 86(4), 334–343.PubMedCrossRefGoogle Scholar
  19. 19.
    Paulraj, R., & Behari, J. (2011). Effects of low level microwave radiation on carcinogenesis in Swiss Albino mice. Molecular and Cellular Biochemistry, 348, 191–197.PubMedCrossRefGoogle Scholar
  20. 20.
    Paulraj, R., & Behari, J. (2012). Biochemical changes in rat brain exposed to low intensity 9.9 GHz microwave radiation. Cell Biochemistry and Biophysics, 63, 97–102. doi: 10.1007/s12013-012-9344-3.PubMedCrossRefGoogle Scholar
  21. 21.
    Nylund, R., & Leszczynski, D. (2004). Proteomics analysis of human endothelial cell line EA.hy926 after exposure to GSM 900 radiation. Proteomics, 4, 1359–1365.PubMedCrossRefGoogle Scholar
  22. 22.
    Chauhan, V., Mariampillai, A., Bellier, P. V., Qutob, S. S., Gajda, G. B., Lemay, E., et al. (2006). Gene expression analysis of a human lymphoblastoma cell line exposed in vitro to an intermittent 1.9 GHz pulse-modulated radiofrequency field. Radiation Research, 165, 424–429.PubMedCrossRefGoogle Scholar
  23. 23.
    Stagg, R. B., Hawel, L. H., Pastorian, K., Cain, C., Adey, W. R., & Byus, C. V. (2001). Effect of immobilization and concurrent exposure to a pulse-modulated microwave field on core body temperature, plasma ACTH and corticosteroid, and brain ornithine decarboxylase, Fos and Jun mRNA. Radiation Research, 155, 584–592.PubMedCrossRefGoogle Scholar
  24. 24.
    Leszczynski, D., Joenvaara, S., Reivinen, J., & Kuokka, R. (2002). Non-thermal activation of the hsp27/p38MAPK stress pathway by mobile phone radiation in human endothelial cells molecular mechanism for cancer- and blood-brain barrier-related effects. Differentiation, 70, 120–129.PubMedCrossRefGoogle Scholar
  25. 25.
    Lin, H., Opler, M., Head, M., Blank, M., & Goodman, R. (1997). Electromagnetic field exposure induces rapid, transitory heat shock factor activation in human cells. Journal of Cell Biochemistry, 66, 482–488.CrossRefGoogle Scholar
  26. 26.
    Caraglia, M., Marra, M., Mancinelli, F., d’Ambrosio, G., Massa, R., Giordano, A., et al. (2005). Electromagnetic fields at mobile phone frequency induce apoptosis and inactivation of the multi-chaperone complex in human epidermoid cancer cells. Journal of` Cell Physiology, 204(2), 539–548.CrossRefGoogle Scholar
  27. 27.
    French, P. W., Penny, R., Laurence, J. A., & McKenzie, D. R. (2001). Mobile phones, heat shock proteins and cancer. Differentiation, 67, 93–97.PubMedCrossRefGoogle Scholar
  28. 28.
    Capri, M., Scarcella, E., Fumelli, C., Bianchi, E., Salvioli, S., Mesirca, P., et al. (2004). In vitro exposure of human lymphocytes to 900 MHz CW and GSM modulated radiofrequency: Studies of proliferation, apoptosis and mitochondrial membrane potential. Radiation Research, 162, 211–218.PubMedCrossRefGoogle Scholar
  29. 29.
    Hook, G. J., Zhang, P., Lagroye, I., Li, L., Higashikubo, R., Moros, E. G., et al. (2004). Measurement of DNA damage and apoptosis in Molt-4 cells after in vitro exposure to radiofrequency radiation. Radiation Research, 16, 193–200.CrossRefGoogle Scholar
  30. 30.
    Yoon, S., & Seger, R. (2006). The extracellular signal-regulated kinase: Multiple substrates regulate diverse cellular functions. Growth Factors, 24, 21–44.PubMedCrossRefGoogle Scholar
  31. 31.
    Rubinfeld, H., & Seger, R. (2005). The ERK cascade: A prototype of MAPK signaling. Molecular Biotechnology, 31(2), 151–174.PubMedCrossRefGoogle Scholar
  32. 32.
    Jin, M., Blank, M., & Goodman, R. (2000). ERK1/2 phosphorylation, induced by electromagnetic fields, diminishes during neoplastic transformation. Journal of Cellular Biochemistry, 78, 371–379.PubMedCrossRefGoogle Scholar
  33. 33.
    Hayashi, I., Morishita, Y., Imai, K., Nakamura, M., Nakachi, K., & Hayashi, T. (2007). High-throughput spectrophotometric assay of reactive oxygen species in serum. Mutation Research, 631, 55–61.PubMedCrossRefGoogle Scholar
  34. 34.
    Kesari, K. K., Kumar, S., & Behari, J. (2011). Effects of radiofrequency electromagnetic waves exposure from cellular phone on reproductive pattern in male Wistar rats. Applied Biochemistry and Biotechnology, 164, 546–559.PubMedCrossRefGoogle Scholar
  35. 35.
    Criswell, K. A., Krishna, G., Zielinski, D., Urda, G. A., Theiss, J. C., Juneau, P., et al. (1998). Use of acridine orange in: Flow cytometric assessment of micronuclei induction. Mutation Research, 414, 63–75.PubMedCrossRefGoogle Scholar
  36. 36.
    Tian, Q., Streuli, M., Saito, H., Schlossman, S. F., & Paul, A. (1991). A polyadenylate binding protein localized to the granules of cytolytic lymphocytes induces DNA fragmentation in target cells. Cell, 67, 629–639.PubMedCrossRefGoogle Scholar
  37. 37.
    Sambrook, J., Fritschi, E. F., & Maniatis, T. (1989). Molecular cloning: A laboratory manual. New York: Cold Spring Harbor Laboratory Press.Google Scholar
  38. 38.
    Meena, R., Kesari, K. K., & Paulraj, R. (2012). Effects of hydroxyapatite nanoparticles on proliferation and apoptosis of human breast cancer cells (MCF-7). Journal of Nanoparticle Research, 14(3), 712.CrossRefGoogle Scholar
  39. 39.
    Xia, Z., Dickens, M., Raingeaud, J., Davis, R. J., & Greenberg, M. E. (1995). Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science, 270, 1326–1331.PubMedCrossRefGoogle Scholar
  40. 40.
    Johnson, G. L., & Lapadat, R. (2002). Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science, 298, 1911–1912.PubMedCrossRefGoogle Scholar
  41. 41.
    Pan, J., Xu, G., & Yeung, S. C. (2001). Cytochrome c release is upstream to activation of caspase-9, caspase-8, and caspase-3 in the enhanced apoptosis of anaplastic thyroid cancer cells induced by manumycin and paclitaxel. Journal of Clinical Endocrinology Metabolism, 86, 4731–4740.PubMedCrossRefGoogle Scholar
  42. 42.
    Bossy-Wetzel, E., & Green, D. R. (1999). Caspases induce cytochrome c release from mitochondria by activating cytosolic factors. Journal of Biological Chemistry, 274, 17484–17490.PubMedCrossRefGoogle Scholar
  43. 43.
    D’Autréaux, B., & Toledano, M. B. (2007). ROS as signalling molecules: Mechanisms that generate specificity in ROS homeostasis. Nature Reviews Molecular Cell Biology, 8, 813–824.PubMedCrossRefGoogle Scholar
  44. 44.
    Meena, R., Kumari, K., Kumar, J., Rajamani, P., Verma, H. N., & Kesari, K. K. (2013). Therapeutic approaches of melatonin in microwave radiations-induced oxidative stress-mediated toxicity on male fertility pattern of Wistar rats. Electromagnetic Biology and Medicine,. doi: 10.3109/15368378.2013.781035.PubMedGoogle Scholar
  45. 45.
    Lai, H., & Singh, N. P. (1997). Melatonin and N-tert-butyl-α-phenylnitrone blocked 60-Hz magnetic field-induced DNA single and double strand breaks in rat brain cells. Journal Pineal Research, 22, 152–162.CrossRefGoogle Scholar
  46. 46.
    Lai, H., & Singh, N. P. (1997). Melatonin and a spin-trap compound blocked radiofrequency radiation induced DNA strand breaks in rat brain cells. Bioelectromagnetics, 18, 446–454.PubMedCrossRefGoogle Scholar
  47. 47.
    Lai, H., & Singh, N. P. (2004). Magnetic field-induced DNA strand breaks in brain cells of rat. Environmental Health Perspectives, 112(6), 87–694.CrossRefGoogle Scholar
  48. 48.
    Paulraj, R., & Behari, J. (2006). Single strand DNA breaks in rat brain cells exposed to microwave radiation. Mutation Research, 596, 76–80.PubMedCrossRefGoogle Scholar
  49. 49.
    Fumarola, C., & Guidotti, G. G. (2004). Stress-induced apoptosis: Toward a symmetry with receptor-mediated cell death. Apoptosis, 9, 77–82.PubMedCrossRefGoogle Scholar
  50. 50.
    Yuan, Z. Q., Feldman, R. I., Sussman, G. E., Coppola, D., Nicosia, S. V., & Cheng, J. Q. (2003). AKT2 inhibition of Cisplatin-induced JNK/p38 and Bax activation by phosphorylation of ASK1: IMPLICATION OF AKT2 in chemoresistance. Journal of Biological Chemistry, 278, 23432–23440.PubMedCrossRefGoogle Scholar
  51. 51.
    Davis, R. J. (2000). Signal transduction by the JNK group of MAP kinases. Cell, 103(2), 239–252.PubMedCrossRefGoogle Scholar
  52. 52.
    Wada, T., & Penninger, J. M. (2004). Mitogen-activated protein kinases in apoptosis regulation. Oncogene, 23(16), 2838–2849.PubMedCrossRefGoogle Scholar
  53. 53.
    Westwick, J. K., Bielawska, A. E., Dbaibo, G., Hannun, Y. A., & Brenner, D. A. (1995). Ceramide activates the stress-activated protein kinases. Journal Biological Chemistry, 270, 22689–22692.CrossRefGoogle Scholar
  54. 54.
    Chen, Y. R., Meyer, C. F., & Tan, T. H. (1996). Persistent activation of c-Jun N-terminal kinase 1 (JNK1) in gamma radiation-induced apoptosis. Journal of Biological Chemistry, 271, 631–634.PubMedCrossRefGoogle Scholar
  55. 55.
    Cuvillier, O., Pirianov, G., Kleuser, B., Vanek, P. G., Coso, O. A., Gutkind, S., et al. (1996). Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature, 381, 800–803.PubMedCrossRefGoogle Scholar
  56. 56.
    Zanke, B. W., Boudreau, K., Rubie, E., Winnett, E., Tibbles, L. A., Zon, L., et al. (1996). The stress-activated protein kinase pathway mediates cell death following injury induced by cis-platinum, UV irradiation or heat. Current Biology, 6, 606–613.PubMedCrossRefGoogle Scholar
  57. 57.
    Kurada, P., & White, K. (1998). Ras promotes cell survival in Drosophila by downregulating hid expression. Cell, 95, 319–329.PubMedCrossRefGoogle Scholar
  58. 58.
    Choi, S. Y., Kim, M., Kang, C., Bae, G., Cho, C., Soh, J., et al. (2006). Activation of Bak and Bax through c-Abl-Protein Kinase C-p38 MAPK signaling in response to ionizing radiation in human non-small cell lung cancer cells. Journal of Biological Chemistry, 281(11), 7049–7059.PubMedCrossRefGoogle Scholar
  59. 59.
    Cheng, A., Chan, S. L., Milhavet, O., Wang, S., & Mattson, M. P. (2001). p38 MAP kinase mediates nitric oxide induced apoptosis of neural progenitor cells. Journal of Biological Chemistry, 276, 43320–43327.PubMedCrossRefGoogle Scholar
  60. 60.
    Choi, J. A., Park, M. T., Kang, C. M., Um, H. D., Bae, S., Lee, K. H., et al. (2004). Opposite effects of Ha-Ras and Ki-Ras on radiation-induced apoptosis via differential activation of PI3K/Akt and Rac/p38 mitogen-activated protein kinase signaling pathways. Oncogene, 23, 9–20.PubMedCrossRefGoogle Scholar
  61. 61.
    Galan, A., Garcia-Bermejo, M. L., Troyano, A., Vilaboa, N. E., de Blas, E., Kazanietz, M. G., et al. (2000). Stimulation of p38 mitogen-activated protein kinase is an early regulatory event for the cadmium-induced apoptosis in human promonocytic cells. Journal of Biological Chemistry, 275, 11418–11424.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Kavindra Kumar Kesari
    • 1
  • Ramovatar Meena
    • 2
  • Jayprakash Nirala
    • 2
  • Jitender Kumar
    • 2
  • H. N. Verma
    • 1
  1. 1.School of Life SciencesJaipur National UniversityJaipurIndia
  2. 2.School of Environmental SciencesJawaharlal Nehru UniversityNew DelhiIndia

Personalised recommendations