Cell Biochemistry and Biophysics

, Volume 67, Issue 3, pp 1487–1495 | Cite as

AGR2 Expression is Regulated by HIF-1 and Contributes to Growth and Angiogenesis of Glioblastoma

Translational Biomedical Research

Abstract

Glioblastoma multiforme (GBM) tumors are the most common type of brain tumors characterized by extensive angiogenesis that is mostly orchestrated by tumor hypoxia. The hypoxia induced factor-1 (HIF-1) transcriptional complex is the “master control switch” for hypoxia. Dysregulation of anterior gradient protein 2 (AGR2) expression is associated with tumor growth and metastasis. Whether AGR2 is a hypoxia-responsive factor and affects tumor progression via angiogenesis remains unknown. Here, we show that GBM cell lines, U87 and LN18, exhibited enhanced hypoxic responses compared with control normal human astrocytes, and a corresponding HIF-1-dependent increase in AGR2 mRNA and protein. Recombinant AGR2 and conditioned medium from GBM cells induced human umbilical vein endothelial cell (HUVEC) migration and tube formation, which were abrogated by anti-AGR2 neutralizing antibodies. Expression of the HIF-1α oxygen-dependent degradation domain mutant in cells resulted in elevated AGR2 levels and an increased ability to induce HUVEC migration and tube formation in vitro and enhanced growth and vascularity of tumor xenografts in vivo, which were prevented by AGR2 knockdown. Taken together, these results indicate that AGR2 expression is regulated by HIF-1 and plays an important role in control of glioblastoma growth and vascularity. Our findings suggest that inhibiting AGR2 may represent a new therapeutic target for anti-angiogenic cancer treatment.

Keywords

Glioblastom Multiforme Anterior gradient protein 2 Hypoxia Hypoxia induced factor-1 Tumor angiogenesis 

References

  1. 1.
    Zhao, N., Sun, B. C., Sun, T., Ma, Y. M., Zhao, X. L., Liu, Z. Y., et al. (2012). Hypoxia-induced vasculogenic mimicry formation via VE-cadherin regulation by Bcl-2. Medical Oncology, 29(5), 3599–3607.PubMedCrossRefGoogle Scholar
  2. 2.
    Facciabene, A., Peng, X., Hagemann, I. S., Balint, K., Barchetti, A., Wang, L. P., et al. (2011). Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells. Nature, 475(7355), 226–230.PubMedCrossRefGoogle Scholar
  3. 3.
    Oliver, L., Olivier, C., Marhuenda, F. B., Campone, M., & Vallette, F. M. (2009). Hypoxia and the malignant glioma microenvironment: regulation and implications for therapy. Current Molecular Pharmacology, 2(3), 263–284.PubMedCrossRefGoogle Scholar
  4. 4.
    Wang, G. L., & Semenza, G. L. (1995). Purification and characterization of hypoxia-inducible factor 1. Journal of Biological Chemistry, 270(3), 1230–1237.PubMedCrossRefGoogle Scholar
  5. 5.
    Tanimoto, K., Makino, Y., Pereira, T., & Poellinger, L. (2000). Mechanism of regulation of the hypoxia-inducible factor-1 alpha by the von Hippel-Lindau tumor suppressor protein. EMBO Journal, 19(16), 4298–4309.PubMedCrossRefGoogle Scholar
  6. 6.
    Vajkoczy, P., Farhadi, M., Gaumann, A., Heidenreich, R., Erber, R., Wunder, A., et al. (2002). Microtumor growth initiates angiogenic sprouting with simultaneous expression of VEGF, VEGF receptor-2, and angiopoietin-2. Journal of Clinical Investigation, 109(6), 777–785.PubMedGoogle Scholar
  7. 7.
    Fiorenzo, P., Mongiardi, M. P., Dimitri, D., Cozzolino, M., Ferri, A., Montano, N., et al. (2010). HIF1-positive and HIF1-negative glioblastoma cells compete in vitro but cooperate in tumor growth in vivo. International Journal of Oncology, 36(4), 785–791.PubMedGoogle Scholar
  8. 8.
    Miletic, H., Niclou, S. P., Johansson, M., & Bjerkvig, R. (2009). Anti-VEGF therapies for malignant glioma: treatment effects and escape mechanisms. Expert Opinion on Therapeutic Targets, 13(4), 455–468.PubMedCrossRefGoogle Scholar
  9. 9.
    Thompson, D. A., & Weigel, R. J. (1998). hAG-2, the human homologue of the Xenopus laevis cement gland gene XAG-2, is coexpressed with estrogen receptor in breast cancer cell lines. Biochemical and Biophysical Research Communications, 251(1), 111–116.PubMedCrossRefGoogle Scholar
  10. 10.
    Komiya, T., Tanigawa, Y., & Hirohashi, S. (1999). Cloning of the gene gob-4, which is expressed in intestinal goblet cells in mice. Biochimica et Biophysica Acta, 1444(3), 434–438.PubMedCrossRefGoogle Scholar
  11. 11.
    Aberger, F., Weidinger, G., & Grunz, H. (1998). Anterior specification of embryonic ectoderm: The role of the Xenopus cement gland-specific gene XAG-2. Mechanisms of Development, 72(1–2), 115–130.PubMedCrossRefGoogle Scholar
  12. 12.
    Liu, D., Rudland, P. S., Sibson, D. R., Platt-Higgins, A., & Barraclough, R. (2005). Human homologue of cement gland protein, a novel metastasis inducer associated with breast carcinomas. Cancer Research, 65(9), 3796–3805.PubMedCrossRefGoogle Scholar
  13. 13.
    Fritzsche, F. R., Dahl, E., Pahl, S., Burkhardt, M., Luo, J., Mayordomo, E., et al. (2006). Prognostic relevance of AGR2 expression in breast cancer. Clinical Cancer Research, 12(6), 1728–1734.PubMedCrossRefGoogle Scholar
  14. 14.
    Innes, H. E., Liu, D., Barraclough, R., Davies, M. P., O’Neill, P. A., Platt-Higgins, A., et al. (2006). Significance of the metastasis-inducing protein AGR2 for outcome in hormonally treated breast cancer patients. British Journal of Cancer, 94(7), 1057–1065.PubMedCrossRefGoogle Scholar
  15. 15.
    Groome, M., Lindsay, J., Ross, P. E., Cotton, J. P., Hupp, T. R., & Dillon, J. F. (2008). Use of oesophageal stress response proteins as potential biomarkers in the screening for Barrett’s oesophagus. European Journal of Gastroenterology and Hepatology, 20(10), 961–965.PubMedCrossRefGoogle Scholar
  16. 16.
    Wang, Z., Hao, Y., & Lowe, A. W. (2008). The adenocarcinoma-associated antigen, AGR2, promotes tumor growth, cell migration, and cellular transformation. Cancer Research, 68(2), 492–497.PubMedCrossRefGoogle Scholar
  17. 17.
    Ramachandran, V., Arumugam, T., Wang, H., & Logsdon, C. D. (2008). Anterior gradient 2 is expressed and secreted during the development of pancreatic cancer and promotes cancer cell survival. Cancer Research, 68(19), 7811–7818.PubMedCrossRefGoogle Scholar
  18. 18.
    Zhu, H., Lam, D. C., Han, K. C., Tin, V. P., Suen, W. S., Wang, E., et al. (2007). High resolution analysis of genomic aberrations by metaphase and array comparative genomic hybridization identifies candidate tumour genes in lung cancer cell lines. Cancer Letters, 245(1–2), 303–314.PubMedCrossRefGoogle Scholar
  19. 19.
    Zhang, Y., Ali, T. Z., Zhou, H., D’Souza, D. R., Lu, Y., Jaffe, J., et al. (2010). ErbB3 binding protein 1 represses metastasis-promoting gene anterior gradient protein 2 in prostate cancer. Cancer Research, 70(1), 240–248.PubMedCrossRefGoogle Scholar
  20. 20.
    Pohler, E., Craig, A. L., Cotton, J., Lawrie, L., Dillon, J. F., Ross, P., et al. (2004). The Barrett’s antigen anterior gradient-2 silences the p53 transcriptional response to DNA damage. Molecular and Cellular Proteomics, 3(6), 534–547.PubMedCrossRefGoogle Scholar
  21. 21.
    Kissler, S., Stern, P., Takahashi, K., Hunter, K., Peterson, L. B., & Wicker, L. S. (2006). In vivo RNA interference demonstrates a role for Nramp1 in modifying susceptibility to type 1 diabetes. Nature Genetics, 38(4), 479–483.PubMedCrossRefGoogle Scholar
  22. 22.
    Forsythe, J. A., Jiang, B. H., Iyer, N. V., Agani, F., Leung, S. W., Koos, R. D., et al. (1996). Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Molecular and Cellular Biology, 16(9), 4604–4613.PubMedGoogle Scholar
  23. 23.
    Ke, Q., & Costa, M. (2006). Hypoxia-inducible factor-1 (HIF-1). Molecular Pharmacology, 70(5), 1469–1480.PubMedCrossRefGoogle Scholar
  24. 24.
    Mercapide, J., Lopez De Cicco, R., Castresana, J. S., & Klein-Szanto, A. J. (2003). Stromelysin-1/matrix metalloproteinase-3 (MMP-3) expression accounts for invasive properties of human astrocytoma cell lines. International Journal of Cancer, 106(5), 676–682.CrossRefGoogle Scholar
  25. 25.
    Reardon, D. A., Turner, S., Peters, K. B., Desjardins, A., Gururangan, S., Sampson, J. H., et al. (2011). A review of VEGF/VEGFR-targeted therapeutics for recurrent glioblastoma. Journal of the National Comprehensive Cancer Network, 9(4), 414–427.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Vascular SurgeryChina–Japan Union Hospital Affiliated to Jilin UniversityChangchunChina
  2. 2.School of Life SciencesJilin Agricultural UniversityChangchunChina
  3. 3.Department of Cardiovascular SurgeryChina-Japan Union Hospital Affiliated to Jilin UniversityChangchunChina

Personalised recommendations