Cell Biochemistry and Biophysics

, Volume 67, Issue 3, pp 1147–1156 | Cite as

Sensing Biophysical Alterations of Human Lung Epithelial Cells (A549) in the Context of Toxicity Effects of Diesel Exhaust Particles

  • Yangzhe Wu
  • Gerald D. McEwen
  • Mingjie Tang
  • Tian Yu
  • James T. Dimmick
  • Anhong Zhou
  • Timothy A. Gilbertson
  • Roger A. CoulombeJr
  • John R. Stevens
Original Paper


Diesel exhaust particles (DEP) in urban air are associated with numerous respiratory diseases. The role of underlying biomechanics in cytotoxicity of individual lung cells relating to DEP exposure is unclear. In this study, atomic force microscopy (AFM), confocal Raman microspectroscopy (RM), and fluorescence (FL) microscopy were used to monitor alterations of single A549 cells exposed to DEP. Results revealed a significant decrease in membrane surface adhesion force and a significant change in cell elasticity as a function of DEP–cell interaction time, and the dynamic changes in cellular biocomponents which were reflected by changes of characteristic Raman bands: 726 cm−1 (adenine), 782 cm−1 (uracil, cytosine, thymine), 788 cm−1 (O–P–O), 1006 cm−1 (phenylalanine), and 1320 cm−1 (guanine) after DEP exposure. These findings suggest that the combination of multi-instruments (e.g., AFM/FL) may offer an exciting platform for investigating the roles of biophysical and biochemical responses to particulate matter-induced cell toxicity.


Diesel exhaust particle toxicity Human lung carcinoma epithelial cells (A549) Cell biomechanics Atomic force microscopy Confocal Raman microspectroscopy 



This work is partially supported by Huntsman Environmental Research Center, Logan, UT, USU VPR Seed Grant program, and Utah Water Research Laboratory. We also thank Mr. Joseph Shope from the Department of Biology to help confocal laser scanning microscope imaging.

Supplementary material

12013_2013_9618_MOESM1_ESM.doc (2.1 mb)
Supplementary material 1 (DOC 2112 kb)


  1. 1.
    Brauer, M., & Henderson, S. (2003). Diesel exhaust particles and related air pollution from traffic sources in the lower mainland (pp. 1–28). Willingdon Green: Health Canada, Environment and Sustainability Program.Google Scholar
  2. 2.
    Watterson, T. L., Sorensen, J., Martin, R., & Coulombe, R. A. (2007). Effects of PM2.5 collected from Cache Valley Utah on genes associated with the inflammatory response in human lung cells. Journal of Toxicology & Environmental Health Part A: Current Issues, 70, 1731–1744.CrossRefGoogle Scholar
  3. 3.
    Watterson, T. L., Hamilton, B., Martin, R., & Coulombe, R. A. (2009). Urban particulate matter causes er stress and the unfolded protein response in human lung cells. Toxicological Sciences, 112, 111–122.PubMedCrossRefGoogle Scholar
  4. 4.
    Ris, C. (2007). U.S. EPA health assessment for diesel engine exhaust: A review. Inhalation Toxicology, 19(Suppl 1), 229–239.PubMedCrossRefGoogle Scholar
  5. 5.
    Amara, N., Bachoual, R., Desmard, M., Golda, S., Guichard, C., Lanone, S., et al. (2007). Diesel exhaust particles induce matrix metalloprotease-1 in human lung epithelial cells via a NADP(H) oxidase/NOX4 redox-dependent mechanism. American Journal of Physiology. Lung Cellular and Molecular Physiology, 293, L170–181.PubMedCrossRefGoogle Scholar
  6. 6.
    Ito, T., Okumura, H., Tsukue, N., Kobayashi, T., Honda, K., & Sekizawa, K. (2006). Effect of diesel exhaust particles on mRNA expression of viral and bacterial receptors in rat lung epithelial L2 cells. Toxicology Letters, 165, 66–70.PubMedCrossRefGoogle Scholar
  7. 7.
    Saxena, R. K., Gilmour, M. I., & Hays, M. D. (2008). Isolation and quantitative estimation of diesel exhaust and carbon black particles ingested by lung epithelial cells and alveolar macrophages in vitro. BioTechniques, 44, 799–805.PubMedCrossRefGoogle Scholar
  8. 8.
    Mazzarella, G., Ferraraccio, F., Prati, M. V., Annunziata, S., Bianco, A., Mezzogiorno, A., et al. (2007). Effects of diesel exhaust particles on human lung epithelial cells: an in vitro study. Respiratory Medicine, 101, 1155–1162.PubMedCrossRefGoogle Scholar
  9. 9.
    Hirano, S., Furuyama, A., Koike, E., & Kobayashi, T. (2003). Oxidative-stress potency of organic extracts of diesel exhaust and urban fine particles in rat heart microvessel endothelial cells. Toxicology, 187, 161–170.PubMedCrossRefGoogle Scholar
  10. 10.
    Nemmar, A., Al-Maskari, S., Ali, B. H., & Al-Amri, I. S. (2007). Cardiovascular and lung inflammatory effects induced by systemically administered diesel exhaust particles in rats. American Journal of Physiology. Lung Cellular and Molecular Physiology, 292, L664–L670.PubMedCrossRefGoogle Scholar
  11. 11.
    Suzuki, A. K., Taneda, S., Fujitani, Y., & Li, C. (2008). Diesel exhaust particles contained high concentration nanoparticles affects on cardiovascular system. Toxicology Letters, 180, S226–S226.CrossRefGoogle Scholar
  12. 12.
    Wold, L. E., Simkhovich, B. Z., Kleinman, M. T., Nordlie, M. A., Dow, J. S., Sioutas, C., et al. (2006). In vivo and in vitro models to test the hypothesis of particle-induced effects on cardiac function and arrhythmias. Cardiovascular Toxicology, 6, 69–78.PubMedCrossRefGoogle Scholar
  13. 13.
    Wu, Y. Z., McEwen, G. D., Harihar, S., Baker, S. M., DeWald, D. B., & Zhou, A. H. (2010). BRMS1 expression alters the ultrastructural, biomechanical and biochemical properties of MDA-MB-435 human breast carcinoma cells: An AFM and Raman microspectroscopy study. Cancer Letters, 293, 82–91.PubMedCrossRefGoogle Scholar
  14. 14.
    Wu, Y. Z., & Zhou, A. H. (2009). In situ, real-time tracking of cell wall topography and nanomechanics of antimycobacterial drugs treated Mycobacterium JLS using atomic force microscopy. Chem Commun, 45, 7021–7023.CrossRefGoogle Scholar
  15. 15.
    Berdyyeva, T., Woodworth, C. D., & Sokolov, I. (2005). Visualization of cytoskeletal elements by the atomic force microscope. Ultramicroscopy, 102, 189–198.PubMedCrossRefGoogle Scholar
  16. 16.
    Horber, J. K., & Miles, M. J. (2003). Scanning probe evolution in biology. Science, 302, 1002–1005.PubMedCrossRefGoogle Scholar
  17. 17.
    Cross, S. E., Jin, Y. S., Rao, J., & Gimzewski, J. K. (2007). Nanomechanical analysis of cells from cancer patients. Nature Nanotechnology, 2, 780–783.PubMedCrossRefGoogle Scholar
  18. 18.
    Alcaraz, J., Buscemi, L., Grabulosa, M., Trepat, X., Fabry, B., Farre, R., et al. (2003). Microrheology of human lung epithelial cells measured by atomic force microscopy. Biophysical Journal, 84, 2071–2079.PubMedCrossRefGoogle Scholar
  19. 19.
    Rico, F., Roca-Cusachs, P., Gavara, N., Farre, R., Rotger, M., & Navajas, D. (2005). Probing mechanical properties of living cells by atomic force microscopy with blunted pyramidal cantilever tips. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 72, 021914.CrossRefGoogle Scholar
  20. 20.
    Dupres, V., Verbelen, C., Raze, D., Lafont, F., & Dufrene, Y. F. (2009). Force spectroscopy of the interaction between mycobacterial adhesins and heparan sulphate proteoglycan receptors. ChemPhysChem, 10, 1672–1675.PubMedCrossRefGoogle Scholar
  21. 21.
    Tomankova, K., Kolarova, H., & Bajgar, R. (2008). Study of photodynamic and sonodynamic effect on A549 cell line by AFM and measurement of ROS production. Physica Status Solidi A, 205, 1472–1477.CrossRefGoogle Scholar
  22. 22.
    Tomankova, K., Kolarova, H., Bajgar, R., Jirova, D., Kejlova, K., & Mosinger, J. (2009). Study of the photodynamic effect on the A549 cell line by atomic force microscopy and the influence of green tea extract on the production of reactive oxygen species. Annals of the New York Academy of Sciences, 1171, 549–558.PubMedCrossRefGoogle Scholar
  23. 23.
    Ling, J., Weitman, S. D., Miller, M. A., Moore, R. V., & Bovik, A. C. (2002). Direct Raman imaging techniques for study of the subcellular distribution of a drug. Applied Optics, 41, 6006–6017.PubMedCrossRefGoogle Scholar
  24. 24.
    Yu, C., Gestl, E., Eckert, K., Allara, D., & Irudayaraj, J. (2006). Characterization of human breast epithelial cells by confocal Raman microspectroscopy. Cancer Detection and Prevention, 30, 515–522.PubMedCrossRefGoogle Scholar
  25. 25.
    Krishna, C. M., Sockalingum, G. D., Kegelaer, G., Rubin, S., Kartha, V. B., & Manfait, M. (2005). Micro-Raman spectroscopy of mixed cancer cell populations. Vibrational Spectroscopy, 38, 95–100.CrossRefGoogle Scholar
  26. 26.
    Notingher, I., Verrier, S., Haque, S., Polak, J. M., & Hench, L. L. (2003). Spectroscopic study of human lung epithelial cells (A549) in culture: Living cells versus dead cells. Biopolymers, 72, 230–240.PubMedCrossRefGoogle Scholar
  27. 27.
    Verrier, S., Notingher, I., Polak, J. M., & Hench, L. L. (2004). In situ monitoring of cell death using Raman microspectroscopy. Biopolymers, 74, 157–162.PubMedCrossRefGoogle Scholar
  28. 28.
    Owen, C. A., Selvakumaran, J., Notingher, I., Jell, G., Hench, L. L., & Stevens, M. M. (2006). In vitro toxicology evaluation of pharmaceuticals using Raman micro-spectroscopy. Journal of Cellular Biochemistry, 99, 178–186.PubMedCrossRefGoogle Scholar
  29. 29.
    Danielsen, P. H., Loft, S., & Moller, P. (2008). DNA damage and cytotoxicity in type II lung epithelial (A549) cell cultures after exposure to diesel exhaust and urban street particles. Particle and Fibre Toxicology, 5, 6.PubMedCrossRefGoogle Scholar
  30. 30.
    Bayram, H., Ito, K., Issa, R., Ito, M., Sukkar, M., & Chung, K. F. (2006). Regulation of human lung epithelial cell numbers by diesel exhaust particles. European Respiratory Journal, 27, 705–713.PubMedCrossRefGoogle Scholar
  31. 31.
    Pyrgiotakis, G., Bhowmick, T. K., Finton, K., Suresh, A. K., Kane, S. G., Bellare, J. R., et al. (2008). Cell (A549)-particle (Jasada Bhasma) interactions using Raman spectroscopy. Biopolymers, 89, 555–564.PubMedCrossRefGoogle Scholar
  32. 32.
    Wu, Y., Yu, T., Gilbertson, T. A., Zhou, A., Xu, H., & Nguyen, K. T. (2012). Biophysical assessment of single cell cytotoxicity: Diesel exhaust particle-treated human aortic endothelial cells. PLoS ONE, 7, e36885.PubMedCrossRefGoogle Scholar
  33. 33.
    van den Berg, R. A., Hoefsloot, H. C. J., Westerhuis, J. A., Smilde, A. K., & van der Werf, M. J. (2006). Centering, scaling, and transformations: Improving the biological information content of metabolomics data. BMC Genomics, 7, 1471–2164.Google Scholar
  34. 34.
    Carero, A. D. P., Hoet, P. H. M., Verschaeve, L., Schoeters, G., & Nemery, B. (2001). Genotoxic effects of carbon black particles, diesel exhaust particles, and urban air particulates and their extracts on a human alveolar epithelial cell line (A549) and a human monocytic cell line (THP-1). Environmental and Molecular Mutagenesis, 37, 155–163.CrossRefGoogle Scholar
  35. 35.
    Lee, G. Y. H., & Lim, C. T. (2007). Biomechanics approaches to studying human diseases. Trends in Biotechnology, 25, 111–118.PubMedCrossRefGoogle Scholar
  36. 36.
    Suresh, S. (2007). Nanomedicine—Elastic clues in cancer detection. Nature Nanotechnology, 2, 748–749.PubMedCrossRefGoogle Scholar
  37. 37.
    Cross, S. E., Jin, Y. S., Tondre, J., Wong, R., Rao, J., & Gimzewski, J. K. (2008). AFM-based analysis of human metastatic cancer cells. Nanotechnology, 19, 384003.PubMedCrossRefGoogle Scholar
  38. 38.
    Notingher, I., Green, C., Dyer, C., Perkins, E., Hopkins, N., Lindsay, C., et al. (2004). Discrimination between ricin and sulphur mustard toxicity in vitro using Raman spectroscopy. Journal of the Royal Society Interface, 1, 79–90.CrossRefGoogle Scholar
  39. 39.
    Notingher, I., Selvakumaran, J., & Hench, L. L. (2004). New detection system for toxic agents based on continuous spectroscopic monitoring of living cells. Biosensors Bioelectronics, 20, 780–789.PubMedCrossRefGoogle Scholar
  40. 40.
    Buckmaster, R., Asphahani, F., Thein, M., Xu, J., & Zhang, M. Q. (2009). Detection of drug-induced cellular changes using confocal Raman spectroscopy on patterned single-cell biosensors. Analyst, 134, 1440–1446.PubMedCrossRefGoogle Scholar
  41. 41.
    Hinnen, C., Rousseau, A., Parsons, R., & Reynaud, J. A. (1981). Comparison between the behaviour of native and denatured DNA at mercury and gold electrodes by capacity measurements and cyclic voltammetry. Journal of Electroanalytical Chemistry and Interfacial Chemistry, 125, 193–203.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Yangzhe Wu
    • 1
    • 5
  • Gerald D. McEwen
    • 1
  • Mingjie Tang
    • 1
  • Tian Yu
    • 2
  • James T. Dimmick
    • 1
  • Anhong Zhou
    • 1
  • Timothy A. Gilbertson
    • 2
  • Roger A. CoulombeJr
    • 3
  • John R. Stevens
    • 4
  1. 1.Department of Biological EngineeringUtah State UniversityLoganUSA
  2. 2.Department of BiologyUtah State UniversityLoganUSA
  3. 3.Department of Veterinary Sciences, and Graduate Toxicology ProgramUtah State UniversityLoganUSA
  4. 4.Department of Mathematics and StatisticsUtah State UniversityLoganUSA
  5. 5.Department of Microbiology and ImmunologyCollege of Medicine, University of Illinois at ChicagoChicagoUSA

Personalised recommendations