DNA Methylation and Cancer Development: Molecular Mechanism
- 2.1k Downloads
- 61 Citations
Abstract
DNA methylation is a significant regulator of gene expression, and its role in carcinogenesis recently has been a subject of remarkable interest. The aim of this review is to analyze the mechanism and cell regulatory effects of both hypo- and hyper-DNA methylation on cancer. In this review, we report new developments and their implications regarding the effects of DNA methylation on cancer development. Indeed, alteration of the pattern of DNA methylation has been a constant finding in cancer cells of the same type and differences in the pattern of DNA methylation not only occur in a variety of tumor types, but also in developmental processes Furthermore, the pattern of histone modification appears to be a predicator of the risk of recurrence of human cancers. It is well known that hypermethylation represses transcription of the promoter sections of tumor-suppressor genes leading to gene silencing. However, hypomethylation also has been identified as a cause of oncogenesis. Furthermore, experiments concerning the mechanism of methylation and its control have led to the discovery of many regulatory enzymes and proteins. This review reports on methods developed for the detection of 5-hydroxymethylcytosine methylation at the 5-methylcytosine of protein domains in the CpG context compared to non-methylated DNA, histone modification, and microRNA change.
Keywords
DNA methylation Cancer Oncogenesis Histone modification Epigenetics MicroRNAReferences
- 1.Law, J. A., Jacobsen, S. E (2010). Establishing, maintaining and modifying DNA methylation patterns in plants and animals.Google Scholar
- 2.Docherty, S. J., Davis, O. S., Haworth, C. M. M., Plomin, R., & Mill, J. (2010). DNA methylation profiling using bisulfite-based epityping of pooled genomic DNA. Methods, 52, 255–258.PubMedGoogle Scholar
- 3.Singal, R., & Ginder, G. D. (1999). DNA methylation. Blood, 93, 4059–4070.PubMedGoogle Scholar
- 4.Laird, P. W. (2003). The power and the promise of DNA methylation markers. Nature Reviews Cancer, 3, 253–266.PubMedGoogle Scholar
- 5.Baylin, S. B. (1997). Tying it all together: Epigenetics, genetics, cell cycle, and cancer. Science, 277, 1948–1949.PubMedGoogle Scholar
- 6.Costello, J. F., & Plass, C. (2001). Methylation matters. Journal of Medical Genetics, 38, 285–303.PubMedGoogle Scholar
- 7.Baylin, S. B. (1997). Tying it all together: Epigenetics, genetics, cell cycle, and cancer. Science, 277, 1948–1949.PubMedGoogle Scholar
- 8.Cooper, D. N. & Krawczak, M. (1990). Human Genetics 83, 181–188.Google Scholar
- 9.Bestor, T. H (1992). Embo G 11, 2611–2617.Google Scholar
- 10.Ehrlich, M., Zhang, X, Y. & Inamdar, N. M. (1990) Mutatation Research 238, 277–286.Google Scholar
- 11.Bedford, M. T.& Van Helden, P. D. (1987) Cancer Research 47, 5274–5276.Google Scholar
- 12.Bestor, T., Laudano, A., Mattaliano, R. & Ingram, V. (1988) G Molecular Biology 203, 971–983.Google Scholar
- 13.Fremont, M., Siegmann, M., Gaulis, S., et al. (1997). Demethylation of DNA by purified chick embryo 5-methylcytosine-DNA glycosylase requires both protein and RNA. Nucleic Acids Research, 25, 2375–2380.PubMedGoogle Scholar
- 14.Wade, P. A., Gegonne, A., Jones, P. L., et al. (1999). Mi-2 complex couples DNA methylation to chromatin remodelling and histone deacetylation. Nature Genetics, 23, 62–66.PubMedGoogle Scholar
- 15.Rhee, I., Bachman, K. E., Park, B. H., et al. (2002). DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature, 416, 552–556.PubMedGoogle Scholar
- 16.Paroush, Z., Keshet, I., Yisraeli, G. & Cedar, H. (1990). Cell 63, 1229–1237.Google Scholar
- 17.Monk, M., Adams, R. L. & Rinaldi, A. (1991) Development 112, 189–192.Google Scholar
- 18.Yen, R. W., Campbell, T. A., Nelkin, B. D., Yu, J., Jel, D. W., Cumaraswamy, A., Lennon, G. G., Trask, B. J., Celano, P. & Baylin, S. B. (1992) Nucleic Acids Research 20, 2287–2291.Google Scholar
- 19.Vairapandi, M. & Duker, N. J. (1993) Nucleic Acids Research 21, 5323-5327.Google Scholar
- 20.Singer, S. J. & Riggs, A. D. (1993) In Jost, J. P. and Saluz, H. P. (ed.), DNA Methylation: molecular biology and biological significance. BirkhauserVerlag, Basel (Switzerland). pp. 358–384.Google Scholar
- 21.Wu, J. C. & Santi, D. V. (1987) Journal Biological Chemistry 262, 4778–4786.Google Scholar
- 22.Rideout, W.III., Coetzee, G. A., Olumi, A. F.& Jones, P. A. (1990) Science 249, 1288–1290.Google Scholar
- 23.Das P. M., Rakesh, S. (2004) DNA Methylation and cancer.Google Scholar
- 24.Lam, A. K. Y. (2000). Molecular biology of esophageal squamous cell carcinoma. Critical Reviews in Oncology/Hematology, 33, 71–90.PubMedGoogle Scholar
- 25.Parkin, D. M., Baray, F., Ferlay, J., & Pisanl, P. (2001). Estimating the world cancer burden: Globocan 2000, International Journal of cancer, 94(2), 153–156.Google Scholar
- 26.Ducasse, M., & Brown, M. A. (2006). Epigenetic aberrations and cancer. Molecular Cancer, 5, 60.PubMedGoogle Scholar
- 27.Ohki, L., Shimotake, N., Fujita, N., Jea, J., Ikegami, T., & Nakao, M. (2001). Solution structure of the methly - CpG binding domain of human MBD1 in complex with methylated DNA. Cell, 105, 487–497.PubMedGoogle Scholar
- 28.Ng, H. H., & Bird, A. (1999). DNA methylation and chromatin modification. Current Opinion in Genetics & Development, 9, 158–163.Google Scholar
- 29.Costello, J. F. (2001). PlassC: Methylation matters. Journal of Medical Genetics, 38, 285–303.PubMedGoogle Scholar
- 30.Ordway, J. M., & Curran, T. (2002). Methylation matters: Modeling a manageable genome. Cell Growth & Differentiation, 13, 149–162.Google Scholar
- 31.Flanagan, H. M., Munoz-Alegre, M., Henderson, S. M., Tang, T., Sun, P., Johnson, N., et al. (2009). Gene-body hypermethylation of ATM in peripheral blood DNA of bilateral breast cancer patients. Human Molecular Genetics, 18, 1332–1342.PubMedGoogle Scholar
- 32.Moore, L. E., Pfeiffer, R. M., Poscablo, C., Real, F. X., Kogevinas, M., Silverman, D., et al. (2008). Genomic DNA hypomethylation as a biomarker for bladder cancer susceptibility in the Spanish Bladder cancer study: A case-control study. Lancet Oncol, 9, 359–366.PubMedGoogle Scholar
- 33.Lim, U., Flood, A., Choi, S. W., Alanes, D., Cross, A. J., Schatzkinm, A., et al. (2008). Genomic methylation of leukocyte DNA in relation to colorectal adenoma among asymptomatic women. Gastroenterology, 134, 47–55.PubMedGoogle Scholar
- 34.Widschwendter, M., Apostolidou, S., Raum, E., Rothenbacher, D., Fiegl, H., Menon, U., et al. (2008). Epigenotyping in peripheral blood cell DNA and breast cancer risk: A proof of principle study. PLoS ONE, 3, e2656.PubMedGoogle Scholar
- 35.Ally, M. S., Al-Ghnaniem, R., & Pufulete, M. (2009). The relationship between gene-specific DNA methylation in leukocytes and normal colorectal mucosa in subjects with and without colorectal tumors. Cancer Epidemiology, Biomarkers and Prevention, 18, 922–928.PubMedGoogle Scholar
- 36.Teschendorff, A. E., Menon, U., Gayther, S. A., Ramus, S. J., Gentry –Maharaj, A., Apostolidou, S., et al. (2009). An epigenetic signature in peripheral blood predicts active ovarian cancer. PLoS ONE, 4, e8274.PubMedGoogle Scholar
- 37.Pedersen, K. S., Bamlet, W. R., Oberg, A. L., de Anderade, M., Matsumoto, M. E., Tang, H., et al. (2011). Leukocyte DNA methylation signature differentiates pancreatic cancer patients from healthy controls. PLoS ONE, 6, e18223.PubMedGoogle Scholar
- 38.Kristensen, L. S., & Hansen, L. L. (2009). PCRP-based methods for detecting single-loci DNA methylation biomarkers in cancer diagnostics, prognostics, and response to treatment. Clinical Chemistry, 55, 1471–1483.PubMedGoogle Scholar
- 39.Bibikova, M., & Fan, J. B. (2010). Genome-wide DNA methylation profiling. Wiley Interdisciplinary Reviews Systems Biology and Medicine, 2, 210–223.PubMedGoogle Scholar
- 40.Gupta, R., Nagarajan, A., Wajapeyee, N. (2010) Advances in genome-wide DNA methylation analysis. Biotechniques 49, iii–xi.Google Scholar
- 41.Bock, C., Tomazou, E. M., Brinkman, A. B., Meller, F., Simmer, F., Gu, H., et al. (2010). Quantitative comparison of genome-wide DNA methylation mapping technologies. Nature of Biotechnology, 28, 1106–1114.Google Scholar
- 42.Bibikova, M., Le, J., Barnes, B., Saedinia-Melnyk, S., Zhou, L., Shen, R., et al. (2009). Genome-wide DNA methylation profiling using infinium assay. Epigenomics, 1, 177–200.PubMedGoogle Scholar
- 43.Yuasa, Y. (2010). Epigenetics in molecular epidemiology of cancer a new scope. Advances Genetics, 71, 211–235.Google Scholar
- 44.Brait, M., Ford, J. G., Papaiahgari, S., Garza, M. A., Lee, J. I., Loyo, M., et al. (2009). Association between lifestyle factors and CpG island methylation in a cancer-free population. Cancer Epidemiology, Biomarkers and Prevention, 18, 2984–2991.PubMedGoogle Scholar
- 45.Techendorff, A. E., Menon, U., Gentry-Maharaj, A., Ramus, S. J., Weisenberger, D. J., Shen, H., et al. (2010). Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer. Genome Research, 20, 440–446.Google Scholar
- 46.Breitling, L. P., Yang, R., Korn, B., Burwinkel, B., & Brenner, H. (2011). Tobacco-smoking-related differential DNA methylation: 27 k discovery and replication. The American Journal of Human Genetics, 88, 450–457.Google Scholar
- 47.Terry, M. B., Delgado-Cruzata, L., Vin-Raviv, N., Wu, H. C., & Santella, R. M. (2011). DNA methylation in white blood cells: Association with risk factors in epidemiologic studies. Epigenetics, 6, 828–837.PubMedGoogle Scholar
- 48.Terry, M. B., Ferris, J. S., Pilsner, R., Flom, J. D., Tehranifar, P., Santella, R. M., et al. (2008). Genomic New York City birth cohort. Cancer Epidemiology, Biomarkers and Prevention, 17, 2306–2310.PubMedGoogle Scholar
- 49.Zhang, F. F., Morabia, A., Carroll, J., Gonzalez, K., Fulda, K., Kaur, M., et al. (2011). Dietary patterns are associated with levels of global genomic DNA methylation in a cancer-free population. The Journal of Nutrition, 141, 1165–1171.PubMedGoogle Scholar
- 50.Wang, X., Zhu, H., Snieder, H., Su, S., Munn, D., Harshfield, G., et al. (2010). Obesity related methylation changes in DNA of peripheral blood leukocytes. BMC Medicine, 8, 87.PubMedGoogle Scholar
- 51.Zhang, F. F., Cardarelli, R., Zhang, F. F., Carroll, J., Fulda, K. G., Gonzalez, K., et al. (2011). Physical activity and global genomic DNA methylation in a cancer-free population. Epigenetics, 6, 293–299.PubMedGoogle Scholar
- 52.Van der Auwera, I., Elst, H. J., Van Laere, S. J., Maes, H., Huget, P., van Dam, P., et al. (2009). The presence of circulating total DNA and methylated genes is associated with circulationg tumour cells in blood from breast cancer patients. British Journal of Cancer, 100, 1277–1286.PubMedGoogle Scholar
- 53.Yazici, H., Terry, M. B., Cho, Y. H., Senie, R. T., Liao, Y., Andrulis, I., et al. Aberrant methylation of RASSFIA in plasma DNA before breast cancer diagnosis in the Breast Cancer Family Registry.Google Scholar
- 54.Wang, Y. C., Yu, Z. H., Lio, C., Xu, L. Z., Yu, W., Lu, J., et al. (2008). Detection of RASSFIA promoter hypermethylation in serum from gastric and colorectal adenocarcinoma patients. World Journal of Gastroenterology, 14, 3074–3080.PubMedGoogle Scholar
- 55.Ellinger, J., Haan, K., Heukamp, L. C., Kahl, P., Meller, S. C., et al. (2008). CpG island hypermethylation in cell-free serum DNA identifies patients with localized prostate cancer. Prostate, 68, 42–49.PubMedGoogle Scholar
- 56.Lofton-Day, C., Model, F., Devos, T., Tetzner, R., Distler, J., Schuster, M., et al. (2008). DNA Methylation biomarkers for blood-based colorectal cancer screening. Clinical Chemistry, 54, 414–423.PubMedGoogle Scholar
- 57.Gobel, G., Auer, D., Gaugg, I., Schneitter, A., Lesche, R., Muller-Holzner, E., et al. (2011). Prognostic significance of methylated RASSFIA and PITX2 genes in blood—and bone marrow plasma of breast cancer patients. Breast Cancer Research and Treatment, 130(1), 109–117.PubMedGoogle Scholar
- 58.Sunami, E., Shinozaki, M., Higano, C. S., Wollman, R., Dorff, T. B., Tucker, S. J., et al. (2009). Multimarker circulating DNA assay for assessing blood of prostate cancer patients. Clinical Chemistry, 55, 559–567.PubMedGoogle Scholar
- 59.Lee, B. B., Lee, E. J., Jung, E. H., Chun, H. K., Chang, D. K., Song, S. Y., et al. (2009). Aberrant methylation of APC, MGMT, RASSF2A, and Wif-l genes in plasma as a biomarker for early detection of colorectal cancer. Clinical Cancer Research, 15, 6185–6191.PubMedGoogle Scholar
- 60.Kaaks, R., Stattin, P., Villar, S., Poetsch, A. R., Dossus, L., Nieters, A., et al. (2009). Insulin-like growth factor-II methylation status in lymphocyte DNA colon cancer risk in the Northern Sweden health and disease cohort. Cancer Research, 69, 5400–5405.PubMedGoogle Scholar
- 61.Cash, H. L., Tao, L., Yuan, J. M., Marsit, C. J., Houseman, E. A., Xiang, Y. B., et al. (2012). LINE-l hypomethylation is associated with bladder cancer risk among non-smoking Chinese. International Journal of Cancer, 130(5), 1151–1159.Google Scholar
- 62.Wang, L., Aakre, J. A., Jiang, R., Marks, R. S., Eu, Y., Chen, J., et al. (2010). Methylation markers for small cell lung cancer in peripheral blood leukocyte DNA. Journal of Thoracic Oncology, 5, 778–785.PubMedGoogle Scholar
- 63.Al-Moundhri, M. S., Al-Nabhani, M., Tarantini, L., Baccarelli, A., & Rusiecki, J. A. (2010). The prognostic significance of whole blood global and specific DNA methylation levels in gastric adenocarcinoma. PLoS ONE, 5, e15585.PubMedGoogle Scholar
- 64.Tierling, S., Schuster, M., Tetzner, R., & Walter, J. (2010). A combined HM-PCR/SNuPE method for high sensitive detection of rare DNA methylation. Epigenetics and Chromatin, 3, 12.PubMedGoogle Scholar
- 65.Radpour, R., Barekati, Z., Kohler, C., Lv, Q., Burki, N., Diesch, C., et al. (2011). Hypermethylation of tumor suppressor genes involved in critical regulatory pathways for developing a blood-based test in breast cancer. PLoS ONE, 6, e16080.PubMedGoogle Scholar
- 66.De Vos, T., Tetzner, R., Model, F., Weiss, G., Schuster, M., Distler, J., et al. (2009). Circulating methylated SEPT9 DNA in plasma is a biomarker for colorectal cancer. Clinical Chemistry, 55, 1337–1346.Google Scholar
- 67.Melnikov, A. A., Scholtens, D., Talamonti, M. S., Bentrem, D. J., & Levenson, V. V. (2009). Methylation profile of circulating plasma DNA in patients with pancreatic cancer. Journal of Surgical Oncology, 99, 119–122.PubMedGoogle Scholar
- 68.Cho, Y. H., Yazici, H., Wu, H. C., Terry, M. B., Gonzalez, K., Qu, M., et al. (2010). Aberrant promoter hypermethylation and genomic hypomethylation in tumor, adjacent normal tissues and blood from breast cancer patients. Anticancer Research, 30, 2489–2496.PubMedGoogle Scholar
- 69.Wilhelm, C. S., Kelsey, K. T., Butler, R., Plaza, S., Zens, M. S., et al. (2010). Implications of LINE1 methylation for bladder cancer risk in women. Clinical Cancer Research, 16, 1682–1689.PubMedGoogle Scholar
- 70.Pinheiro, H., Bordeira-Carrico, R., Seixas, S., Carvalho, J., Senz, J., Oliveira, P., et al. (2010). Allele-specific CDHl downregulation and hereditary diffuse gastric cancer. Human Molecular Genetics, 19, 943–952.PubMedGoogle Scholar
- 71.Wilson, A. S., Power, B. E., & Molloy, P. L. (2007). DNA hypomethylation and human diseases. Biochimica et Biophysica Acta, 1775(1), 138–162.PubMedGoogle Scholar
- 72.Paredes, J., Albergaria, A., Oliveira, J. T., Jeronimo, C., Milanezi, F., & Schmitt, F. C. (2005). P-cadherin overexpression is an indicator of clinical outcome in invasive breast carcinomas and is associated with CDH3 promoter hypomethylation. Clinical Cancer Research, 11(16), 5869–5877.PubMedGoogle Scholar
- 73.Liu, H., Liu, W., Eu, Y., et al. (2005). Loss of epigenetic control of synuclein-γ as a molecular indicator of metastasis in a wide range of human cancers. Cancer Research, 65(17), 7635–7643.PubMedGoogle Scholar
- 74.Woodson, K., Mason, J., Choi, S. W., et al. (2001). Hypomethylation of p53 in peripheral blood DNA is associated with the development of lung cancer. Cancer Epidemiology, Biomarkers and Prevention, 10(1), 69–74.PubMedGoogle Scholar
- 75.Callinan, P. A., & Feinberg, A. P. (2006). The emerging science of epigenomics. Human Molecular Genetics, 15(Spec. No.1), R95–R101.PubMedGoogle Scholar
- 76.Yang, A. S., Estecio, M. R., Doshi, K., Kondo, Y., Tajara, E. H., & Issa, J. P. (2004). A simple method for edtrimating global DNA methylation using bisulfit PCR of repetitive DNA elements. Nucleic Acids Research, 32(3), e38.PubMedGoogle Scholar
- 77.Ogino, S., Nosho, K., Kirkner, G. J., et al. (2008). A cohort study of tumoral line-1 hypomethylation and prognosis in colon cancer. Journal National Cancer Institute, 100(23), 1734–1738.Google Scholar
- 78.Irahara, N., Nosho, K., Baba, Y., et al. (2010). Precision of pyrosequencing assay to measure lin-1 methylation in colon cancer, normal colonic mucosa, and peripheral blood cells. The Journal of Molecular Diagnostics, 12(2), 177–183.PubMedGoogle Scholar
- 79.Lee, Y., Ahn, C., Han, H., et al. (2003). The nuclear RNase III drosha initiates micron processing. Nature, 425(6956), 415–419.PubMedGoogle Scholar
- 80.Lund, E., Guttinger, S., Calado, A., et al. (2004). Nuclear export of micron precursors. Science, 303(5654), 95–98.PubMedGoogle Scholar
- 81.Nilsen, T. W. (2007). Mechanisms of micron-mediated gene regulation in animal cells. Trends of Genetics, 23(5), 243–249.Google Scholar
- 82.Wiemer, E. A. (2007). The role of micronas in cancer: no small matter. European Journal of Cancer, 43(10), 1529–1544.PubMedGoogle Scholar
- 83.Michael, M. Z., SM, O. C., van Holst Pellekaan, N. G., et al. (2003). Reduced accumulation of specific micronas in colorectal neoplasia. Cancer Research, 1(12), 882–891.Google Scholar
- 84.Kitade, Y., & Akao, Y. (2010). Micronas and their therapeutic potential for human diseases micronas, mir-143 and -145 function as anti-oncomirs and the application of chemically modified mir-143 as an anti-cancer drug. Journal of Pharmacology Science, 114(3), 276–280.Google Scholar
- 85.Ng, E. K., Chong, W. W., Jin, H., et al. (2009). Differential expression of micronas in plasma of patients with colorectal cancer: A potential marker for colorectal cancer screening. Gut, 58(10), 1375–1381.PubMedGoogle Scholar
- 86.Koga, Y., Yasunaga, M., & Takahashi, A. (2010). Microna expression profiling of exfoliated colonocytes isolated from feces for colorectal cancer screening. Cancer Prevention Research (Philadelphia, Pa.), 3(11), 1435–1442.Google Scholar
- 87.Lagos-Quintana, M., Rauhut, R., Lendeckel, W., et al. (2001). Identification of novel genes coding for small expressed rnas. Science, 294(5543), 853–858.PubMedGoogle Scholar
- 88.Wang, C. J., Zhoi, Z. G., Wang, L., et al. (2009). Clinicopathological significance of micronas-31,-143 and -145 expression in colorectal cancer. Disease Markers, 26(1), 27–34.PubMedGoogle Scholar
- 89.Slaby, O., Svoboda, M., Fabian, P., et al. (2007). Altered expression of mir-21, mir-31, mir-143 and mir-145 is related to cliniccopathologic features of colorectal cancer [J]. Oncology, 72(5–6), 397–402.PubMedGoogle Scholar
- 90.Wang, C. J., Stratmann, J., Zhou, Z. G., et al. (2010). Suppression of micron-31 increases sensitivity to 5-FU at an early stage, and affects cell migration and invasion in HCT-116colon cancer cells. BMC Cancer, 10, 616.PubMedGoogle Scholar
- 91.Cheng, H., Zhang, L., Cogdell, D. E., et al. (2011). Circulating plasma mir-141 is a novel biomarker for metastatic colon cancer and predicts poor prognosis. PLoS ONE, 6(3), e17745.PubMedGoogle Scholar
- 92.Schepeler, T., Reinert, J. T., Ostenfeld, M. S., et al. (2008). Diagnostic and prognostic micronas in stage II colon cancer. Cancer Research, 68(15), 6414–6424.Google Scholar
- 93.Schetter, A. J., Leung, S. Y., Sohn, J. J., et al. (2008). Microna expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA, 299(4), 425–436.PubMedGoogle Scholar
- 94.Volinia, S., Calin, G. A., Liu, C. G., et al. (2006). A micron expression signature of human solid tumors defines cancer gene targets [J]. Proceedings of the National Academy of Sciences of the United States of America, 103(7), 2257–2261.PubMedGoogle Scholar
- 95.Longley, D. B., Harkin, D. P., & Johnston, P. G. (2003). 5-fluorouracil: Mechanisms of action and clinical strategies. Nature Review Cancer, 3(5), 330–338.Google Scholar
- 96.Schetter, A. J., Nguyen, G. H., Bowmen, E. D., et al. (2009). Association of inflammation-related and micron gene expression with cancer-specific mortality of colon adenocarcinoma. Clinical Cancer Research, 15(18), 5878–5887.PubMedGoogle Scholar
- 97.Bandres, E., Agirre, X., Bitarte, N., et al. (2009). Epigenetic regulation of micron expression in colorectal cancer. International Journal of Cancer, 125(11), 2737–2743.Google Scholar
- 98.Balaguer, F., Link, A., Lozano, J. J., et al. (2010). Epigenetic silencing of mir-137 is an early event in colorectal carcinogenesis. Cancer Research, 70(16), 6609–6618.PubMedGoogle Scholar
- 99.Saito, Y., Liang, G., Egger, G., et al. (2006). Specific activation of microrna-127 with downregulation of the proto-oncogene bcl6 by chromatin-modifying drugs in human cancer cells. Cancer Cell, 9(6), 435–443.PubMedGoogle Scholar
- 100.Lujambio, A., Ropero, S., Ballestar, E., et al. (2007). Genetic unmasking of an epigenetically silenced microrna in human cancer cells [J]. Cancer Research, 67(4), 1424–1429.PubMedGoogle Scholar
- 101.Berger, S. L. (2002). Histone modifications in transcriptional regulation. Current Opinion in Genetics & Development, 12(2), 142–148.Google Scholar
- 102.Barski, A., Cuddapah, S., Cui, K., et al. (2007). High-resolution profiling of histone methylations in the human genome. Cell, 129(4), 823–837.PubMedGoogle Scholar
- 103.Litt, M. D., Simpson, M., Gaszner, M., et al. (2001). Correlation between histone lysine methylation and developmental changes at the chicken beta-globin locus [J]. Science, 293(5539), 2453–2455.PubMedGoogle Scholar
- 104.Noma, L., Allis, C. D., & Grewal, Sl. (2001). Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries. Science, 293(5532), 1150–1155.PubMedGoogle Scholar
- 105.Richon, V. M., Sandhof, T. W., Rifkind, R. A., et al. (2000). Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proceedings of the National Academy of Sciences of the United States of America, 97(18), 10014–10019.PubMedGoogle Scholar
- 106.Pruitt, K., Zinn, R. L., Ohm, J. E., et al. (2006). Inhibition of SIRT1 reactivates silenced cancer genes without loss of promoter DNA hypermethylation. PLoS Genetics, 2(3), e40.PubMedGoogle Scholar
- 107.Tsang, D. P. F., & Cheng, A. S. L. (2011). Epigenetic regulation of signaling pathways in cancer: Role of the histone methyltransferase EZH2. Journal of Gastroenterolhepatology, 26(1), 19–27.Google Scholar
- 108.Pelaez, I. M., Kalogeropoulou, M., Ferraro, A., et al. (2010). Oncogenic ras alters the global and gene-specific histone modification pattern during epithelial-mesenchymal transition in colorectal carcinoma during epithelial-mesenchymal transition in colorectal carcinoma cells. Biology International, 42(6), 911–920.Google Scholar
- 109.Baylin, S. B., & Herman, J. G. (2000). DNA hypermethylation in tumorigenesis: Epigenetics joins [J]. Trends Genetics, 16(4), 168–174.Google Scholar
- 110.Jones, P. A., & Laird, P. (1999). Cancer epigenetics comes of age. Nature Genetics, 21(2), 163–167.PubMedGoogle Scholar
- 111.Jenuwein, T., & Allis, C. D. (2001). Translating the histone code. Science, 293(5532), 1074–1080.PubMedGoogle Scholar
- 112.Tamaru, H., & Selkar, E. R. (2001). A histone H3 methyltransferase controls DNA methylation in neurosporacrassa. Nature, 414(6861), 277–283.PubMedGoogle Scholar
- 113.Jackson, J. P., Lindroth, A. M., Cao, X., et al. (2002). Control of cpnpg DNA methylation by the kryptonite histone H3 methyltransferase. Nature, 416(6880), 558–560.Google Scholar
- 114.Herman, J. G., Umar, A., Polyak, K., et al. (1998). Incidence and functional consequences of HMLH promoter hypermethylation in colorectal carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 95(12), 6870–6875.PubMedGoogle Scholar
- 115.Farhrner, J. A., Eguchi, S., Herman, J. G., et al. (2002). Dependence of histone modification and gene expression on DNA hypermethylation in cancer. Cancer Research, 62(24), 7213–7218.Google Scholar
- 116.Valenzuela, M. T., Galisteo, R., Zuluaga, A., Villalobos, M., Nunez, M, I., Oliver, F. J., et al. (2002). Assessing the use of p16INK4a promoter gene methylation in serum for detection of bladder cancer. European Urology 42: 622–628, discussion 628–630.Google Scholar
- 117.Leung, W. K., To, K. F., Chu, E. S., Chan, M. W., Bai, A. H., Ng, E. K., et al. (2005). Potential diagnostic and prognostic values of detecting promoter hypermethylation in the serum of patients with gastric cancer. British Journal of Cancer, 92, 2190–2194.PubMedGoogle Scholar
- 118.Wong, T. S., Man, M. W., Lam, A. K., Wei, W. I., Kwong, Y. L., & Yuen, A. P. (2003). The study of p16 and p15 gene methylation in head and neck squamous cell carcinoma and their quantitative evaluation in plasma by real-time PCR. European Journal of Cancer, 39, 1881–1887.PubMedGoogle Scholar
- 119.Fujiwara, K., Fujimoto, N., Tabata, M., Nishii, K., Matsuo, K., Hotta, K., et al. (2005). Identification of epigenetic aberrant promoter methylation in serum DNA is useful for early detection of lung cancer. Clinical Cancer Research, 11, 1219–1225.PubMedGoogle Scholar
- 120.Wong, T. S., Kwong, D. L., Sham, J. S., Wei, W. I., Kwong, Y. L., & Yuen, A. P. (2004). Quantitative plasma hypermethylation DNA markers of undifferentiated nasopharyngeal carcinoma. Clinical Cancer Research, 10, 2401–2406.PubMedGoogle Scholar
- 121.Reibenwein, J., Pils, D., Horak, P., Tomicek, B., Goldner, G., Worel, N., et al. (2007). Promoter hypermethylation of GSTPI, AR, and 14-3-3 sigma in serum of prostate cancer patients and is clinical relevance. Prostate, 67, 427–432.PubMedGoogle Scholar
- 122.Fiegl, H., Millinger, S., Mueller-Holzner, E., Marth, C., Ensinger, C., Berger, A., et al. (2005). Circulating tumor-specific DNA: A marker for monitoring efficacy of adjuvant therapy in cancer patients. Cancer Research, 65, 1141–1145.PubMedGoogle Scholar
- 123.Muller, H. M., Widschwendter, A., Fiegl, H., Ivarsson, L. M., Goebel, G., Perkmann, E., et al. (2003). DNA methylation in serum of breast cancer patients: An independents prognostic marker. Cancer Research, 63, 7641–7645.PubMedGoogle Scholar
- 124.Dominguez, G., Carballido, J., Silva, J., Silva, J. M., Garcia, J. M., Menendez, J., et al. (2002). p14ARF promoter hypermethylation in plasma DNA as an indicator of disease recurrence in bladder cancer patients. Clinical Cancer Research, 5, 980–985.Google Scholar
- 125.Widschwendter, A., Muller, H. M., Fiegl, H., Ivarsson, L., Wirdemair, A., Muller-Holzner, E., et al. (2004). DNA methylation in serum and tumors of cervical cancer patients. Clinical Cancer Research, 10, 565–571.PubMedGoogle Scholar
- 126.Widschwendter, A., Ivarsson, L., Blassnig, A., Muller, H. M., Fiegl, H., Wiedemair, A., et al. (2004). CDH1 and CDH13 methylation in serum is an independent prognostic marker in cervical cancer patients. International Journal of Cancer, 109, 163–166.Google Scholar
- 127.Wallner, M., Herbst, A., Behrens, A., Crispin, A., Stieber, P., Goke, B., et al. (2006). Methylation of serum DNA is an independent prognostic marker in colorectal cancer. Clinical Cancer Research, 12, 7347–7352.PubMedGoogle Scholar
- 128.Hoffmann, A. C., Kaifi, J. T., Vallbohmer, D., Yekebas, E., Grimminger, P., Leers, J. M., et al. (2009). Lack of prognostic significance of serum DNA methylation of DAPK, MGMT, and GSTPI in patients with non-small cell lung cancer. Journal of Surgical Oncology, 100, 414–417.PubMedGoogle Scholar
- 129.Kawakami, K., Brabender, J., Lord, R. V., Groshen, S., Greenwaid, B. D., Krasna, M. J., et al. (2000). Hypermethylation APC DNA in plasma and prognosis of patients with esophageal adenocarcinoma. Journal of National Cancer Research, 92, 1805–1811.Google Scholar
- 130.Tangkijvanich, P., Hourpai, N., Rattanatanyong, P., Wisedopas, N., Mahachai, V., & Multirangura, A. (2007). Serum LINE-1 hypomethylation as a potential prognostic marker for hepatocellular carcinoma. Clinical Cancer Acta, 379, 127–133.Google Scholar
- 131.Ramirez, J. L., Rosell, R., Taron, M., Sanchez-Ronco, M., Alberola, V., Las de Penas, R., et al. (2005). 14-3-3 {sigma}methylation in pretreatment serum circulating DNA of cisplatin-plus-gemcitabine-treated advanced non-small-cell lung cancer patients predicts survival: The Spanish Lung Cancer Group. Journal of Clinical Oncology, 23, 9105–9112.PubMedGoogle Scholar
- 132.Gifford, G., Paul, J., Vasey, P. A., Kaye, S. B., & Brown, R. (2004). The acquisition of hMLH1 methylation in plasma DNA after chemotherapy predicts poor survival for ovarian cancer patients. Clinical Cancer Research, 10, 4420–4426.PubMedGoogle Scholar
- 133.Bastian, P. J., Palapattu, G. S., Lin, X., Yegnasubrammanian, S., Mangold, L. A., Trock, B., et al. (2005). Preoperative serum DNA GSTPI CpG island hypermethylation and the risk of early prostatic-specific antigen recurrence following radical prostatectomy. Clinical Cancer Research, 11, 4037–4043.PubMedGoogle Scholar
- 134.Hoque, M. O., Feng, Q., Toure, P., Dem, A., Critchlow, C. W., Hawes, S. E., et al. (2006). Detection of aberrant methylation of four genes in plasma DNA for the detection of breast cancer. Journal of Clinical Oncology, 24, 4262–4269.PubMedGoogle Scholar
- 135.Zhang, Y. J., Wu, H. C., Shen, J., Ahsan, H., Tsai, W. Y., Yang, H. I., et al. (2007). Predicting hepatocellular carcinoma by detection of aberrant promoter methylation in serum DNA. Clinical Cancer Research, 13, 2378–2384.PubMedGoogle Scholar