Cell Biochemistry and Biophysics

, Volume 67, Issue 2, pp 645–656 | Cite as

Computational Analysis of C-Reactive Protein for Assessment of Molecular Dynamics and Interaction Properties

  • Chiranjib ChakrabortyEmail author
  • Alok Agrawal
Original Paper


Serum C-reactive protein (CRP) is used as a marker of inflammation in several diseases including autoimmune disease and cardiovascular disease. CRP, a member of the pentraxin family, is comprised of five identical subunits. CRP has diverse ligand-binding properties which depend upon different structural states of CRP. However, little is known about the molecular dynamics and interaction properties of CRP. In this study, we used SAPS, SCRATCH protein predictor, PDBsum, ConSurf, ProtScale, Drawhca, ASAView, SCide and SRide server and performed comprehensive analyses of molecular dynamics, protein–protein and residue–residue interactions of CRP. We used 1GNH.pdb file for the crystal structure of human CRP which generated two pentamers (ABCDE and FGHIJ). The number of residues involved in residue–residue interactions between A–B, B–C, C–D, D–E, F–G, G–H, H–I, I–J, A–E and F–J subunits were 12, 11, 10, 11, 12, 11, 10, 11, 10 and 10, respectively. Fifteen antiparallel β sheets were involved in β-sheet topology, and five β hairpins were involved in forming the secondary structure. Analysis of hydrophobic segment distribution revealed deviations in surface hydrophobicity at different cavities present in CRP. Approximately 33 % of all residues were involved in the stabilization centers. We show that the bioinformatics tools can provide a rapid method to predict molecular dynamics and interaction properties of CRP. Our prediction of molecular dynamics and interaction properties of CRP combined with the modeling data based on the known 3D structure of CRP is helpful in designing stable forms of CRP mutants for structure–function studies of CRP and may facilitate in silico drug design for therapeutic targeting of CRP.


C-reactive protein (CRP) Autoimmune and cardiovascular disease Molecular dynamics Interaction properties In silico analysis 

Supplementary material

12013_2013_9553_MOESM1_ESM.doc (360 kb)
Supplementary material 1 (DOC 360 kb)


  1. 1.
    Agrawal, A., Singh, P. P., Bottazzi, B., Garlanda, C., & Mantovani, A. (2009). Pattern recognition by pentraxins. Advances in Experimental Medicine and Biology, 653, 98–116.PubMedCrossRefGoogle Scholar
  2. 2.
    Agrawal, A., Hammond, D. J., Jr, & Singh, S. K. (2010). Atherosclerosis-related functions of C-reactive protein. Cardiovascular & Hematological Disorders: Drug Targets, 10, 235–240.CrossRefGoogle Scholar
  3. 3.
    Pepys, M. B., Dash, A. C., Fletcher, T. C., Richardson, N., Munn, E. A., et al. (1978). Analogues in other mammals and in fish of human plasma proteins C-reactive protein and amyloid P component. Nature, 273, 168–177.PubMedCrossRefGoogle Scholar
  4. 4.
    Kushner, I., Rzewnicki, D., & Samols, D. (2006). What does minor elevation of C-reactive protein signify? American Journal of Medicine, 119(166), e17–e28.PubMedGoogle Scholar
  5. 5.
    Ridker, P. M., Cushman, M., Stampfer, M. J., Tracy, R. P., & Hennekens, C. H. (1997). Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. The New England Journal of Medicine, 336, 973–979.PubMedCrossRefGoogle Scholar
  6. 6.
    Shrive, A. K., Cheetham, G. M., Holden, D., Myles, D. A., Turnell, W. G., et al. (1996). Three dimensional structure of human C-reactive protein. Nature Structural Biology, 3, 346–354.PubMedCrossRefGoogle Scholar
  7. 7.
    Thompson, D., Pepys, M. B., & Wood, S. P. (1999). The physiological structure of human C-reactive protein and its complex with phosphocholine. Structure, 7, 169–177.PubMedCrossRefGoogle Scholar
  8. 8.
    Volanakis, J. E., & Kaplan, M. H. (1971). Specificity of C-reactive protein for choline phosphate residues of pneumococcal C-polysaccharide. Proceedings of the Society for Experimental Biology and Medicine, 136, 612–614.PubMedCrossRefGoogle Scholar
  9. 9.
    Singh, S. K., Hammond, D. J., Jr, Beeler, B. W., & Agrawal, A. (2009). The binding of C-reactive protein, in the presence of phosphoethanolamine, to low-density lipoproteins is due to phosphoethanolamine-generated acidic pH. Clinica Chimica Acta, 409, 143–144.CrossRefGoogle Scholar
  10. 10.
    Hammond, D. J., Jr, Singh, S. K., Thompson, J. A., Beeler, B. W., Rusiñol, A. E., et al. (2010). Identification of acidic pH-dependent ligands of pentameric C-reactive protein. Journal of Biological Chemistry, 285, 36235–36244.PubMedCrossRefGoogle Scholar
  11. 11.
    Singh, S. K., Thirumalai, A., Hammond, D. J., Jr, Pangburn, M. K., Mishra, V. K., et al. (2012). Exposing a hidden functional site of C-reactive protein by site-directed mutagenesis. Journal of Biological Chemistry, 287, 3550–3558.PubMedCrossRefGoogle Scholar
  12. 12.
    Potempa, L. A., Siegel, J. N., Fiedel, B. A., Potempa, R. T., & Gewurz, H. (1987). Expression, detection and assay of a neoantigen (Neo-CRP) associated with a free, human C-reactive protein subunit. Molecular Immunology, 24, 531–541.PubMedCrossRefGoogle Scholar
  13. 13.
    Verma, S., Szmitko, P. E., & Yeh, E. T. (2004). C-reactive protein, structure affects function. Circulation, 109, 1914–1917.PubMedCrossRefGoogle Scholar
  14. 14.
    Ji, S. R., Wu, Y., Potempa, L. A., Qiu, Q., & Zhao, J. (2006). Interactions of C-reactive protein with low-density lipoproteins, implications for an active role of modified C-reactive protein in atherosclerosis. International Journal of Biochemistry & Cell Biology, 38, 648–661.CrossRefGoogle Scholar
  15. 15.
    Ji, S. R., Wu, Y., Zhu, L., Potempa, L. A., Sheng, F. L., et al. (2007). Cell membranes and liposomes dissociate C-reactive protein (CRP) to form a new, biologically active structural intermediate, mCRP(m). Journal of Federation of American Societies for Experimental Biology, 21, 284–294.CrossRefGoogle Scholar
  16. 16.
    Boncler, M., & Watała, C. (2009). Regulation of cell function by isoforms of C-reactive protein, a comparative analysis. Acta Biochimica Polonica, 56, 17–31.PubMedGoogle Scholar
  17. 17.
    Eisenhardt, S. U., Habersberger, J., Murphy, A., Chen, Y. C., Woollard, K. J., et al. (2009). Dissociation of pentameric to monomeric C-reactive protein on activated platelets localizes inflammation to atherosclerotic plaques. Circulation Research, 105, 128–137.PubMedCrossRefGoogle Scholar
  18. 18.
    Pepys, M. B., Hirschfield, G. M., Tennent, G. A., Gallimore, J. R., Kahan, M. C., et al. (2006). Targeting C-reactive protein for the treatment of cardiovascular disease. Nature, 440, 1217–1221.PubMedCrossRefGoogle Scholar
  19. 19.
    Tokuriki, N., Stricher, F., Serrano, L., & Tawfik, D. S. (2008). How protein stability and new functions trade off. PLoS Computational Biology, 4, e1000002.PubMedCrossRefGoogle Scholar
  20. 20.
    Shoichet, B. K., Baase, W. A., Kuroki, R., & Matthews, B. W. (1995). A relationship between protein stability and protein function. Proceedings of the National Academy of Sciences of the United States of America, 92, 452–456.PubMedCrossRefGoogle Scholar
  21. 21.
    Gutierrez, H., Castillo, A., Monzon, J., & Urrutia, A. O. (2011). Protein amino acid composition, a genomic signature of encephalization in mammals. PLoS ONE, 6, e27261.PubMedCrossRefGoogle Scholar
  22. 22.
    Marques, J. R., da Fonseca, R. R., Drury, B., & Melo, A. (2010). Amino acid patterns around disulfide bonds. International Journal of Molecular Sciences, 11, 4673–4686.PubMedCrossRefGoogle Scholar
  23. 23.
    Bhattacharyya, R., Pal, D., & Chakrabarti, P. (2004). Disulfide bonds, their stereospecific environment and conservation in protein structures. Protein Engineering, Design & Selection, 17, 795–808.CrossRefGoogle Scholar
  24. 24.
    Hogg, P. J. (2003). Disulfide bonds as switches for protein function. Trends in Biochemical Sciences, 28, 210–214.PubMedCrossRefGoogle Scholar
  25. 25.
    Klink, T. A., Woycechowsky, K. J., Taylor, K. M., & Raines, R. T. (2000). Contribution of disulfide bonds to the conformational stability and catalytic activity of ribonuclease A. European Journal of Biochemistry, 267, 566–572.PubMedCrossRefGoogle Scholar
  26. 26.
    Sardiu, M. E., Cheung, M. S., & Yi-Kuo, Y. (2007). Cysteine-cysteine contact preference leads to target-focusing in protein folding. Journal of Biophysics, 93, 938–951.CrossRefGoogle Scholar
  27. 27.
    Wedemeyer, W. J., Welker, E., Narayan, M., & Scheraga, H. A. (2000). Disulfide bonds and protein folding. Biochemistry, 39, 4208–4216.Google Scholar
  28. 28.
    Kamat, A. P., & Lesk, A. M. (2007). Contact patterns between helices and strands of sheet define protein folding patterns. Proteins, 66, 869–876.PubMedCrossRefGoogle Scholar
  29. 29.
    Chikalov, I., Yao, P., Moshkov, M., & Latombe, J. C. (2011). Learning probabilistic models of hydrogen bond stability from molecular dynamics simulation trajectories. BMC Bioinformatics, 12(Suppl 1), S34.PubMedCrossRefGoogle Scholar
  30. 30.
    Manning, J. R., Jefferson, E. R., & Barton, G. J. (2008). The contrasting properties of conservation and correlated phylogeny in protein functional residue prediction. BMC Bioinformatics, 9, 51.PubMedCrossRefGoogle Scholar
  31. 31.
    Chakraborty, C., Agoramoorthy, G., & Hsu, M. J. (2011). Exploring the evolutionary relationship of insulin receptor substrate family using computational biology. PLoS ONE, 6, e16580.PubMedCrossRefGoogle Scholar
  32. 32.
    Higurashi, M., Ishida, T., & Kinoshita, K. (2008). Identification of transient hub proteins and the possible structural basis for their multiple interactions. Protein Science, 17, 72–78.PubMedCrossRefGoogle Scholar
  33. 33.
    Chakraborty, C., Roy, S. S., Hsu, M. J., & Agoramoorthy, G. (2011). Landscape mapping of functional proteins in insulin signal transduction and insulin resistance, a network-based protein–protein interaction analysis. PLoS ONE, 6, e16388.PubMedCrossRefGoogle Scholar
  34. 34.
    Privalov, P. L. (1979). Stability of proteins, small globular proteins. Advances in Protein Chemistry, 33, 167–241.PubMedCrossRefGoogle Scholar
  35. 35.
    Baldwin, R. L. (1986). Temperature dependence of the hydrophobic interaction in protein folding. Proceedings of the National Academy of Sciences of the United States of America, 83, 8069–8072.PubMedCrossRefGoogle Scholar
  36. 36.
    Dill, K. A. (1990). Dominant forces in protein folding. Biochemistry, 29, 7133–7155.PubMedCrossRefGoogle Scholar
  37. 37.
    Stigter, D., & Dill, K. A. (1990). Charge effects on folded and unfolded proteins. Biochemistry, 29, 1262–1271.PubMedCrossRefGoogle Scholar
  38. 38.
    Andjelković, U., Theisgen, S., Scheidt, H. A., Petković, M., Huster, D., et al. (2012). The thermal stability of the external invertase isoforms from Saccharomyces cerevisiae correlates with the surface charge density. Biochimie, 94, 510–515.PubMedCrossRefGoogle Scholar
  39. 39.
    Simon, Á., Dosztányi, Z., Magyar, C., Szirtes, G., Rajnavölgyi, É., et al. (2001). Stabilization centers and protein stability. Theoretical Chemistry Accounts, Theory, Computation, and Modeling, 106, 121–127.CrossRefGoogle Scholar
  40. 40.
    Dosztányi, Z., Fiser, A., & Simon, I. (1997). Stabilization centers in proteins, identification, characterization and predictions. Journal of Molecular Cell Biology, 272, 597–612.Google Scholar
  41. 41.
    Gilis, D., & Rooman, M. (1997). Predicting protein stability changes upon mutation using database-derived potentials, solvent accessibility determines the importance of local versus non-local interactions along the sequence. Journal of Molecular Cell Biology, 272, 276–290.Google Scholar
  42. 42.
    Sayers, E. W., Barrett, T., Benson, D. A., Bolton, E., Bryant, S. H., et al. (2011). Database resources of the national center for biotechnology information. Nucleic Acids Research, 39, D38–D51.PubMedCrossRefGoogle Scholar
  43. 43.
    Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., et al. (2000). The protein data bank. Nucleic Acids Research, 28, 235–242.PubMedCrossRefGoogle Scholar
  44. 44.
    Brendel, V., Bucher, P., Nourbakhsh, I., Blaisdell, B. E., & Karlin, S. (1992). Methods and algorithms for statistical analysis of protein sequences. Proceedings of the National Academy of Sciences of the United States of America, 89, 2002–2006.PubMedCrossRefGoogle Scholar
  45. 45.
    Cheng, J., Randall, A. Z., Sweredoski, M. J., & Baldi, P. (2005). SCRATCH, a protein structure and structural feature prediction server. Nucleic Acids Research, 33, W72–W76.PubMedCrossRefGoogle Scholar
  46. 46.
    Laskowski, R. A. (2001). PDBsum, summaries and analyses of PDB structures. Nucleic Acids Research, 29, 221–222.PubMedCrossRefGoogle Scholar
  47. 47.
    Laskowski, R. A., Chistyakov, V. V., & Thornton, J. M. (2005). PDBsum more, new summaries and analyses of the known 3D structures of proteins and nucleic acids. Nucleic Acids Research, 33, D266–D268.PubMedCrossRefGoogle Scholar
  48. 48.
    Laskowski, R. A. (2009). PDBsum new things. Nucleic Acids Research, 37, D355–D359.PubMedCrossRefGoogle Scholar
  49. 49.
    Hutchinson, E. G., & Thornton, J. M. (1990). HERA, a program to draw schematic diagrams of protein secondary structures. Proteins, 8, 203–212.PubMedCrossRefGoogle Scholar
  50. 50.
    Ashkenazy, H., Erez, E., Martz, E., Pupko, T., & Ben-Tal, N. (2010). ConSurf 2010, calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Research, 38, W529–W533.PubMedCrossRefGoogle Scholar
  51. 51.
    Roseman, M. A. (1988). Hydrophilicity of polar amino acid side-chains is markedly reduced by flanking peptide bonds. Journal of Molecular Biology, 200, 513–522.PubMedCrossRefGoogle Scholar
  52. 52.
    Callebaut, I., Labesse, G., Durand, P., Poupon, A., Canard, L., et al. (1997). Deciphering protein sequence information through hydrophobic cluster analysis (HCA), current status and perspectives. Cellular and Molecular Life Sciences, 53, 621–645.PubMedCrossRefGoogle Scholar
  53. 53.
    Shrake, A., & Rupley, J. A. (1973). Environment and exposure to solvent of protein atoms, Lysozyme and insulin. Journal of Molecular Biology, 79, 351–371.PubMedCrossRefGoogle Scholar
  54. 54.
    Ahmad, S., Gromiha, M., Fawareh, H., & Sarai, A. (2004). ASAView, database and tool for solvent accessibility representation in proteins. BMC Bioinformatics, 5, 51.PubMedCrossRefGoogle Scholar
  55. 55.
    Glaser, F., Pupko, T., Paz, I., Bell, R. E., Bechor-Shental, D., et al. (2003). ConSurf, identification of functional regions in proteins by surface-mapping of phylogenetic information. Bioinformatics, 19, 163–164.PubMedCrossRefGoogle Scholar
  56. 56.
    Dosztányi, Z. S., Magyar, C. S., Tusnády, G. E., & Simon, I. (2003). SCide, identification of stabilization centers in proteins. Bioinformatics, 19, 899–900.PubMedCrossRefGoogle Scholar
  57. 57.
    Magyar, C., Gromiha, M. M., Pujadas, G., Tusnády, G. E., & Simon, I. (2005). SRide, a server for identifying stabilizing residues in proteins. Nucleic Acids Research, 33, W303–W305.PubMedCrossRefGoogle Scholar
  58. 58.
    Gromiha, M. M., Pujadas, G., Magyar, C., Selvaraj, S., & Simon, I. (2004). Locating the stabilizing residues in (alpha/beta)8 barrel proteins based on hydrophobicity, long-range interactions, and sequence conservation. Proteins, 55, 316–329.PubMedCrossRefGoogle Scholar
  59. 59.
    Wang, M. Y., Ji, S. R., Bai, C. J., El Kebir, D., Li, H. Y., et al. (2011). A redox switch in C-reactive protein modulates activation of endothelial cells. Journal of Federation of American Societies for Experimental Biology, 25, 3186–3196.CrossRefGoogle Scholar
  60. 60.
    Ji, S. R., Ma, L., Bai, C. J., Shi, J. M., Li, H. Y., et al. (2009). Monomeric C-reactive protein activates endothelial cells via interaction with lipid raft micro-domains. Journal of Federation of American Societies for Experimental Biology, 23, 1806–1816.CrossRefGoogle Scholar
  61. 61.
    Chemel, B. R., Bonner, L. A., Watts, V. J., & Nichols, D. E. (2012). Ligand-specific roles for transmembrane 5 serine residues in the binding and efficacy of dopamine D(1) receptor catechol agonists. Molecular Pharmacology, 81, 729–738.PubMedCrossRefGoogle Scholar
  62. 62.
    Ma, B., Elkayam, T., Wolfson, H., & Nussinov, R. (2003). Protein-protein interactions, structurally conserved residues distinguish between binding sites and exposed protein surfaces. Proceedings of the National Academy of Sciences of the United States of America, 100, 5772–5777.PubMedCrossRefGoogle Scholar
  63. 63.
    Kumar, S. V., Ravunny, R. K., & Chakraborty, C. (2011). Conserved domains, conserved residues, and surface cavities of C-reactive protein (CRP). Applied Biochemistry and Biotechnology, 165, 497–505.PubMedCrossRefGoogle Scholar
  64. 64.
    Khreiss, T., Jozsef, L., Hossain, S., Chan, J. S., Potempa, L. A., et al. (2002). Loss of pentameric symmetry of C-reactive protein is associated with delayed apoptosis of human neutrophils. The Journal of Biological Chemistry, 277, 40775–40781.PubMedCrossRefGoogle Scholar
  65. 65.
    Emsley, J., White, H. E., O’Hara, B. P., Oliva, G., Srinivasan, N., et al. (1994). Structure of pentameric human serum amyloid P component. Nature, 367, 338–345.PubMedCrossRefGoogle Scholar
  66. 66.
    Politi, R., & Harries, D. (2010). Enthalpically driven peptide stabilization by protective osmolytes. Chemical Communications (Cambridge, England), 46, 6449–6451.CrossRefGoogle Scholar
  67. 67.
    Srinivasan, N., White, H. E., Emsley, J., Wood, S. P., Pepys, M. B., et al. (1994). Comparative analyses of pentraxins, implications for protomer assembly and ligand binding. Structure, 2, 1017–1027.PubMedCrossRefGoogle Scholar
  68. 68.
    Politi, R., & Harries, D. (2011). Unraveling the molecular mechanism of enthalpy driven peptide folding by polyol osmolytes. Journal of Chemical Theory and Computation, 7, 3816–3828.CrossRefGoogle Scholar
  69. 69.
    Bourgeas, R., Basse, M.-J., Morelli, X., & Roche, P. (2010). Atomic analysis of protein–protein interfaces with known inhibitors, the 2P2I database. PLoS ONE, 5, e9598.PubMedCrossRefGoogle Scholar
  70. 70.
    Munson, M., Balasubramanian, S., Fleming, K. G., Nagi, A. D., O’Brien, R., et al. (1996). What makes a protein a protein? Hydrophobic core designs that specify stability and structural properties. Protein Science, 5, 1584–1593.PubMedCrossRefGoogle Scholar
  71. 71.
    Dill, K. A., Bromberg, S., Yue, K., Fiebig, K. M., Yee, D. P., et al. (1995). Principles of protein folding, a perspective from simple exact models. Protein Science, 4, 561–602.PubMedCrossRefGoogle Scholar
  72. 72.
    Giovambattista, N., Lopez, C. F., Rossky, P. J., & Debenedetti, P. G. (2008). Hydrophobicity of protein surfaces: Separating geometry from chemistry. Proceedings of the National Academy of Sciences of the United States of America, 105, 2274–2279.PubMedCrossRefGoogle Scholar
  73. 73.
    Ponnuswamy, P. K. (1993). Hydrophobic characteristics of folded proteins. Progress in Biophysics and Molecular Biology, 59, 57–103.PubMedCrossRefGoogle Scholar
  74. 74.
    Agrawal, A., Simpson, M. J., Black, S., Carey, M. P., & Samols, D. (2002). A C-reactive protein mutant that does not bind to phosphocholine and pneumococcal C-polysaccharide. Journal of Immunology, 169, 3217–3222.Google Scholar
  75. 75.
    Black, S., Agrawal, A., & Samols, D. (2003). The phosphocholine and the polycation-binding sites on rabbit C-reactive protein are structurally and functionally distinct. Molecular Immunology, 39, 1045–1054.PubMedCrossRefGoogle Scholar
  76. 76.
    Bang, R., Marnell, L., Mold, C., Stein, M. P., Clos, K. T., et al. (2005). Analysis of binding sites in human C-reactive protein for Fc{gamma}RI, Fc{gamma}RIIA, and C1q by site-directed mutagenesis. The Journal of Biological Chemistry, 280, 25095–25102.PubMedCrossRefGoogle Scholar
  77. 77.
    Yue, C. C., Muller-Greven, J., Dailey, P., Lozanski, G., Anderson, V., & Macintyre, S. (1996). Identification of a C-reactive protein binding site in two hepatic carboxylesterases capable of retaining C-reactive protein within the endoplasmic reticulum. The Journal of Biological Chemistry, 271, 22245–22250.PubMedCrossRefGoogle Scholar
  78. 78.
    Black, S., Kushner, I., & Samols, D. (2004). C-reactive protein. The Journal of Biological Chemistry, 279, 48487–48490.PubMedCrossRefGoogle Scholar
  79. 79.
    Gaboriaud, C., Juanhuix, J., Gruez, A., Lacroix, M., & Darnault, C. (2003). The crystal structure of the globular head of complement protein C1q provides a basis for its versatile recognition properties. The Journal of Biological Chemistry, 278, 46974–46982.PubMedCrossRefGoogle Scholar
  80. 80.
    Stigter, D., Alonso, D. O., & Dill, K. A. (1991). Protein stability, electrostatics and compact denatured states. Proceedings of the National Academy of Sciences of the United States of America, 88, 4176–4180.PubMedCrossRefGoogle Scholar
  81. 81.
    Abkevich, V. I., Gutin, A. M., & Shakhnovich, E. I. (1995). Impact of local and non-local interactions on thermodynamics and kinetics of protein folding. The Journal of Biological Chemistry, 252, 460–471.Google Scholar
  82. 82.
    Mirny, L. A., & Shakhnovich, E. (1996). How to drive a protein folding potential? A new approach to an old problem. The Journal of Biological Chemistry, 264, 1164–1179.Google Scholar
  83. 83.
    Bahar, I., & Jernigan, R. L. (1997). Inter-residue potentials in globular proteins and the dominance of highly specific hydrophilic interactions at close separation. The Journal of Biological Chemistry, 266, 195–214.Google Scholar
  84. 84.
    Dosztányi, Z., Fiser, A., & Simon, I. (1997). Stabilization centers in proteins, identification, characterization and predictions. The Journal of Biological Chemistry, 272, 597–612.Google Scholar
  85. 85.
    Ponnuswamy, P. K., & Gromiha, M. M. (1994). On the conformational stability of folded proteins. Journal of Theoretical Biology, 166, 63–74.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Bioinformatics, School of Computer and Information SciencesGalgotias UniversityGreater NoidaIndia
  2. 2.Department of Biomedical Sciences, Quillen College of MedicineEast Tennessee State UniversityJohnson CityUSA

Personalised recommendations