Cell Biochemistry and Biophysics

, Volume 67, Issue 2, pp 795–801

Antibiotic Resistance and Molecular Epidemiology of Methicillin-Resistant Staphylococcus aureus from Lower Respiratory Tract: Multi-resistance and High Prevalence of SCCmec III Type

  • Haiqing Chu
  • Lan Zhao
  • Zhemin Zhang
  • Tao Gui
  • Lizhong Han
  • Yuxing Ni
Translational Biomedical Research


We sought to study antibiotic resistance and molecular epidemiology of methicillin-resistant Staphylococcus aureus (MRSA) from lower respiratory tracts of patients in Shanghai Pulmonary Hospital. Hundred and seven strains of MRSA were isolated from the patients of nine wards. The tests for antibiotic resistance (Kirby–Bauer paper dispersion method), the Panton–Valentine Leukocidin (PVL) and Staphyloccoccal Cassette Chromosome mec (SCCmec) genes (PCR), and homology analysis (32 randomly selected MRSA strains; pulsed-field gel electrophoresis) were carried out. All 107 strains were susceptible to vancomycin, teicoplanin, and linezolid, but highly or completely resistant to tetracycline, gentamicin, clindamycin, levofloxacin, azithromycin, erythromycin, trimethoprim/sulphamethoxazole, and ciprofloxacin. All 107 strains were negative for PVL gene. Most of the strains (81.3 %) were SCCmec III type, while the SCCmec II and IV types were less frequent (15.9 and 2.8 %, respectively). No SCCmec I or V types were detected. The homology analysis test showed that 32 MRSA strains could be divided into 4 groups: type A (25 strains), type B (5 strains), type C (1 strain), and type D (1 strain). The type A included 3 subtypes: A1 (17 strains), A2 (1 strain), and A3 (7 strains). Further, most of the strains were isolated from the same wards or units (e.g., intensive care unit or tuberculosis wards) within a short period of time, indicating an outbreak status. In conclusion, the observed MRSA from low respiratory tracts from patients at Shanghai Pulmonary Hospital were multiple-resistant, with the SCCmec III being the main documented genotype.


Methicillin-resistant Staphylococcus aureus Lower respiratory tract Epidemiology Molecular diagnostics Multi-resistance 


  1. 1.
    Rice, L. B. (2006). Antimicrobial resistance in gram-positive bacteria. American Journal of Medicine, 2006(119), S11–S19.CrossRefGoogle Scholar
  2. 2.
    Udou, T. (2004). Dissemination of nosocomial multiple-aminoglycoside-resistant Staphylococcus aureus caused by horizontal transfer of the resistance determinant (aacA/aphD) and clonal spread of resistant strains. American Journal of Infection Control, 32, 215–219.PubMedCrossRefGoogle Scholar
  3. 3.
    CLSI. (2003). Clinical and Laboratory Standards Institute Quality Manual. Third edition. CLSI, 940 West Valley Road, Suite 1400, Wayne, Pennsylvania 19087-1898, USA.Google Scholar
  4. 4.
    European Centre for Disease Control and Prevention, European Medicines Agency (2009) The bacterial challenge: Time to react. Stockholm: European Centre for Disease Prevention and Control.Google Scholar
  5. 5.
    Ho, P. L., Cheung, C., Mak, G. C., Tse, C. W., Ng, T. K., Cheung, C. H., et al. (2007). Molecular epidemiology and household transmission of community-associated methicillin-resistant Staphylococcus aureus in Hong Kong. Diagnostic Microbiology and Infectious Disease, 57, 145–151.PubMedCrossRefGoogle Scholar
  6. 6.
    Lina, G., Piemont, Y., Godail-Gamot, F., Bes, M., Peter, M. O., Gauduchon, V., et al. (1999). Involvement of Panton–Valentine leukocidin-producing Staphylococcus aureus in primary skin infections and pneumonia. Clinical Infectious Diseases, 29, 1128–1132.PubMedCrossRefGoogle Scholar
  7. 7.
    Zhang, K., McClure, J. A., Elsayed, S., Louie, T., & Conly, J. M. (2005). Novel multiplex PCR assay for characterization and concomitant subtyping of staphylococcal cassette chromosome mec types I to V in methicillin-resistant Staphylococcus aureus. Journal of Clinical Microbiology, 43, 5026–5033.PubMedCrossRefGoogle Scholar
  8. 8.
    Oliveira, D. C., & de Lencastre, H. (2002). Multiplex PCR strategy for rapid identification of structural types and variants of the mec element in methicillin-resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 46, 2155–2161.PubMedCrossRefGoogle Scholar
  9. 9.
    Turkyilmaz, S., Tekbiyik, S., Oryasin, E., & Bozdogan, B. (2010). Molecular epidemiology and antimicrobial resistance mechanisms of methicillin-resistant Staphylococcus aureus isolated from bovine milk. Zoonoses Public Health, 57, 197–203.PubMedCrossRefGoogle Scholar
  10. 10.
    Aires de Sousa, M., Crisostomo, M. I., Sanches, I. S., Wu, J. S., Fuzhong, J., Tomasz, A., et al. (2003). Frequent recovery of a single clonal type of multidrug-resistant Staphylococcus aureus from patients in two hospitals in Taiwan and China. Journal of Clinical Microbiology, 2003(41), 159–163.CrossRefGoogle Scholar
  11. 11.
    Centers for Disease Control and Prevention (CDC). (2002). Staphylococcus aureus resistant to vancomycin—United States. Morbidity and Mortality Weekly Report, 51(26), 565–567.Google Scholar
  12. 12.
    Johnson, A. P. (2011). Methicillin-resistant Staphylococcus aureus: The European landscape. Journal of Antimicrobial Chemotherapy, 66(Suppl 4), iv43–iv48.PubMedCrossRefGoogle Scholar
  13. 13.
    Paterson, D. L. (2004). “Collateral damage” from cephalosporin or quinolone antibiotic therapy. Clinical Infectious Diseases, 38(Suppl 4), S341–S345.PubMedCrossRefGoogle Scholar
  14. 14.
    Gould, I. M. (2006). Costs of hospital-acquired methicillin-resistant Staphylococcus aureus (MRSA) and its control. International Journal of Antimicrobial Agents, 2006(28), 379–384.CrossRefGoogle Scholar
  15. 15.
    Webster, D., Rennie, R. P., Brosnikoff, C. L., Chui, L., & Brown, C. (2007). Methicillin-resistant Staphylococcus aureus with reduced susceptibility to vancomycin in Canada. Diagnostic Microbiology and Infectious Disease, 57, 177–181.PubMedCrossRefGoogle Scholar
  16. 16.
    Ito, T., Katayama, Y., Asada, K., Mori, N., Tsutsumimoto, K., Tiensasitorn, C., et al. (2001). Structural comparison of three types of staphylococcal cassette chromosome mec integrated in the chromosome in methicillin-resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 45, 1323–1336.PubMedCrossRefGoogle Scholar
  17. 17.
    Ma, X. X., Ito, T., Tiensasitorn, C., Jamklang, M., Chongtrakool, P., Boyle-Vavra, S., et al. (2002). Novel type of staphylococcal cassette chromosome mec identified in community-acquired methicillin-resistant Staphylococcus aureus strains. Antimicrobial Agents and Chemotherapy, 46, 1147–1152.PubMedCrossRefGoogle Scholar
  18. 18.
    Chongtrakool, P., Ito, T., Ma, X. X., Kondo, Y., Trakulsomboon, S., Tiensasitorn, C., et al. (2006). Staphylococcal cassette chromosome mec (SCCmec) typing of methicillin-resistant Staphylococcus aureus strains isolated in 11 Asian countries: A proposal for a new nomenclature for SCCmec elements. Antimicrobial Agents and Chemotherapy, 50, 1001–1012.PubMedCrossRefGoogle Scholar
  19. 19.
    Ouyang, F. X., Bu, P. F., Huang, H. Q., & Bao, S. X. (2007). Seven kinds of new SCCmec type in methicillin-resistant Staphylococcus aureus and their susceptibility to the antibiotics. Wei Sheng Wu Xue Bao, 47, 201–207. in Chinese.PubMedGoogle Scholar
  20. 20.
    Onodera, S., Hosobe, T., Machida, T., Kurosaka, K., & Oomayu, S. (1991). A study of methicillin-resistant Staphylococcus aureus (MRSA) infection in the urological field. Kansenshogaku Zasshi, 65, 311–318. in Japanese.PubMedGoogle Scholar
  21. 21.
    Reichman, O., & Sobel, J. D. (2009). MRSA infection of buttocks, vulva, and genital tract in women. Current Infectious Disease Reports, 11, 465–470.PubMedCrossRefGoogle Scholar
  22. 22.
    Noguchi, N., Okihara, T., Namiki, Y., Kumaki, Y., Yamanaka, Y., Koyama, M., et al. (2005). Susceptibility and resistance genes to fluoroquinolones in methicillin-resistant Staphylococcus aureus isolated in 2002. International Journal of Antimicrobial Agents, 25, 374–379.PubMedCrossRefGoogle Scholar
  23. 23.
    Gastmeier, P., Sohr, D., Geffers, C., Nassauer, A., Dettenkofer, M., & Ruden, H. (2002). Occurrence of methicillin-resistant Staphylococcus aureus infections in German intensive care units. Infection, 30, 198–202.PubMedCrossRefGoogle Scholar
  24. 24.
    Cruz, C., Moreno, J., Renzoni, A., Hidalgo, M., Reyes, J., Schrenzel, J., et al. (2005). Tracking methicillin-resistant Staphylococcus aureus clones in Colombian hospitals over 7 years (1996–2003): Emergence of a new dominant clone. International Journal of Antimicrobial Agents, 26, 457–462.PubMedCrossRefGoogle Scholar
  25. 25.
    Diep, B. A., Sensabaugh, G. F., Somboonna, N., Carleton, H. A., & Perdreau-Remington, F. (2004). Widespread skin and soft-tissue infections due to two methicillin-resistant Staphylococcus aureus strains harboring the genes for Panton–Valentine leucocidin. Journal of Clinical Microbiology, 42, 2080–2084.PubMedCrossRefGoogle Scholar
  26. 26.
    Nimmo, G. R., Coombs, G. W., Pearson, J. C., O’Brien, F. G., Christiansen, K. J., Turnidge, J. D., et al. (2006). Methicillin-resistant Staphylococcus aureus in the Australian community: An evolving epidemic. Medical Journal of Australia, 184, 384–388.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Haiqing Chu
    • 1
  • Lan Zhao
    • 1
  • Zhemin Zhang
    • 1
  • Tao Gui
    • 1
  • Lizhong Han
    • 2
  • Yuxing Ni
    • 2
  1. 1.Department of Respiratory Disease, Shanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
  2. 2.Department of Clinical Microbiology, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghaiChina

Personalised recommendations