Cell Biochemistry and Biophysics

, Volume 67, Issue 2, pp 515–525 | Cite as

Gabaergic Pharmacological Activity of Propofol Related Compounds as Possible Enhancers of General Anesthetics and Interaction with Membranes

  • G. N. Reiner
  • L. Delgado-Marín
  • N. Olguín
  • S. Sánchez-Redondo
  • M. Sánchez-Borzone
  • E. Rodríguez-Farré
  • C. Suñol
  • D. A. García
Original Paper


Phenol compounds, such as propofol and thymol, have been shown to act on the GABAA receptor through interaction with specific sites of this receptor. In addition, considering the high lipophilicity of phenols, it is possible that their pharmacological activity may also be the result of the interaction of phenol molecules with the surrounding lipid molecules, modulating the supramolecular organization of the receptor environment. Thus, in the present study, we study the pharmacological activity of some propofol- and thymol-related phenols on the native GABAA receptor using primary cultures of cortical neurons and investigate the effects of these compounds on the micro viscosity of artificial membranes by means of fluorescence anisotropy. The phenol compounds analyzed in this article are carvacrol, chlorothymol, and eugenol. All compounds were able to enhance the binding of [3H]flunitrazepam with EC50 values in the micromolar range and to increase the GABA-evoked Cl influx in a concentration-dependent manner, both effects being inhibited by the competitive GABAA antagonist bicuculline. These results strongly suggest that the phenols studied are positive allosteric modulators of this receptor. Chlorothymol showed a bell-type effect, reducing its positive effect at concentrations >100 μM. The concentrations necessary to induce positive allosteric modulation of GABAA receptor were not cytotoxic. Although all compounds were able to decrease the micro viscosity of artificial membranes, chlorothymol displayed a larger effect which could explain its effects on [3H]flunitrazepam binding and on cell viability at high concentrations. Finally, it is suggested that these compounds may exert depressant activity on the central nervous system and potentiate the effects of general anesthetics.


GABAA receptor Chloride uptake Carvacrol Eugenol Chlorothymol Membrane fluidity 



This study was supported by Argentinian Grants FONCyT, CONICET, SECyT-UNC, Mincyt-Cba, IBRO, and by Spanish Grants from the Ministry of Science and Innovation (FIS 10/0453) and from the Generalitat de Catalunya (2009/SGR/214). D.A.G. and M.S.B. are members of CONICET (Argentina), G.N.R is a fellowship holder from the same institution, and L.D.M. is a fellowship holder from SECyT-UNC. N.O. is recipient of a CSIC contract in the JAE-Doc program cofinanced with European Social Funds.


  1. 1.
    Macdonald, R. L., & Olsen, R. W. (1994). GABAA receptor channels. Annual Review of Neuroscience, 17, 569–602.PubMedCrossRefGoogle Scholar
  2. 2.
    Rudolph, U., & Mohler, H. (2004). Analysis of GABAA receptor function and dissection of the pharmacology of benzodiazepines and general anesthetics through mouse genetics. Annual Review of Pharmacology and Toxicology, 44, 475–498.PubMedCrossRefGoogle Scholar
  3. 3.
    Sogaard, R., Werge, T., Bertelsen, C., Lundbye, C., Madsen, K., Nielsen, C., et al. (2006). GABAA receptor function is regulated by lipid bilayer elasticity. Biochemistry, 45, 13118–13129.PubMedCrossRefGoogle Scholar
  4. 4.
    Campagna-Slater, V., & Weaver, D. (2007). Anaesthetic binding sites for etomidate and propofol on a GABAA receptor model. Neuroscience Letters, 418, 28–33.PubMedCrossRefGoogle Scholar
  5. 5.
    Mohammadi, B., Haeseler, G., Leuwer, M., Dengler, R., Krampfl, K., & Bufler, J. (2001). Structural requirements of phenol derivatives for direct activation of chloride currents via GABAA receptors. European Journal of Pharmacology, 421, 85–91.PubMedCrossRefGoogle Scholar
  6. 6.
    García, D., Bujons, J., Vale, C., & Suñol, C. (2006). Allosteric positive interaction of thymol with the GABAA receptor in primary cultures of mouse cortical neurons. Neuropharmacology, 50, 25–35.PubMedCrossRefGoogle Scholar
  7. 7.
    Johnston, G. (1996). GABAA receptor pharmacology. Pharmacology & Therapeutics, 69, 173–198.CrossRefGoogle Scholar
  8. 8.
    Perillo, M., & García, D. (2001). Flunitrazepam induces geometrical changes at the lipid–water interface. Colloids and Surfaces B: Biointerfaces, 20, 63–72.PubMedCrossRefGoogle Scholar
  9. 9.
    Sánchez, M. E., Turina, A. V., Garcia, D. A., Nolan, M. V., & Perillo, M. A. (2004). Surface activity of thymol: Implications for an eventual pharmacological activity. Colloids and Surfaces B: Biointerfaces, 34, 77–86.PubMedCrossRefGoogle Scholar
  10. 10.
    Cantor, R. (2003). Receptor desensitization by neurotransmitters in membranes: Are neurotransmitters the endogenous anesthetics? Biochemistry, 42, 11891–11897.PubMedCrossRefGoogle Scholar
  11. 11.
    Witt, M. R., & Nielsen, M. (1994). Characterization of the influence of unsaturated free fatty acids on brain GABA/benzodiazepine receptor binding in vitro. Journal of Neurochemistry, 62, 1432–1439.PubMedCrossRefGoogle Scholar
  12. 12.
    García, D., Perillo, M., Zygadlo, J., & Martijena, I. (1995). The essential oil from Tagetes minuta L. modulates the binding of [3H]flunitrazepam to crude membranes from chick brain. Lipids, 30, 1105–1110.PubMedCrossRefGoogle Scholar
  13. 13.
    Perillo, M., García, D., Marin, R., & Zygadlo, J. (1999). Tagetone modulates the coupling of flunitrazepam and GABA binding sites at GABAA receptor from chick brain membranes. Molecular Membrane Biology, 16, 189–194.PubMedCrossRefGoogle Scholar
  14. 14.
    Pytel, M., Mercik, K., & Mozrzymas, J. (2006). Interaction between cyclodextrin and neuronal membrane results in modulation of GABAA receptor conformational transitions. British Journal of Pharmacology, 148, 413–422.PubMedCrossRefGoogle Scholar
  15. 15.
    Reiner, G., Labuckas, D., & García, D. (2009). Lipophilicity of some GABAergic phenols and related compounds determined by HPLC and partition coefficients in different systems. Journal of Pharmaceutical and Biomedical Analysis, 49, 686–691.PubMedCrossRefGoogle Scholar
  16. 16.
    García, D., Vendrell, I., Galofre, M., & Suñol, C. (2008). GABA released from cultured cortical neurons influences the modulation of t-[(35)S]butylbicyclophosphorothionate binding at the GABAA receptor effects of thymol. European Journal of Pharmacology, 600, 26–31.PubMedCrossRefGoogle Scholar
  17. 17.
    Delgado Marín, L., Sánchez-Borzone, M., & García, D. A. (2011). Comparative antioxidant properties of some GABAergic phenols and related compounds, determined for homogeneous and membrane systems. Medicinal Chemistry, 7, 317–324.CrossRefGoogle Scholar
  18. 18.
    Suñol, C., & Garcia, D. (2011. GABAA receptor binding and ion channel function in primary neuronal cultures for neuropharmacology/neurotoxicity testing. In M. Aschner, C. Suñol, & A. Bal-Price (Eds.), Neuromethods 56: cell culture techiques (pp. 481–493). New York: Humana Press.Google Scholar
  19. 19.
    Frandsen, A., & Schousboe, A. (1990). Development of excitatory amino acid induced cytotoxicity in cultured neurons. International Journal of Developmental Neuroscience, 8, 209–216.PubMedCrossRefGoogle Scholar
  20. 20.
    Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65, 55–63.PubMedCrossRefGoogle Scholar
  21. 21.
    Bangham, A., Hill, M., & Miller, N. (1974). Methods in membrane biology. New York: Plenum Press.Google Scholar
  22. 22.
    Lakowicz, J. (1986). Principles of fluorescence spectroscopy. New York: Plenum Press.Google Scholar
  23. 23.
    Hawkinson, J., Acosta-Burruel, M., Yang, K., Hogenkamp, D., Chen, J., Lan, N., et al. (1998). Substituted 3beta-phenylethynyl derivatives of 3alpha-hydroxy-5alpha-pregnan-20-one: Remarkably potent neuroactive steroid modulators of gamma-aminobutyric acidA receptors. Journal of Pharmacology and Experimental Therapeutics, 287, 198–207.PubMedGoogle Scholar
  24. 24.
    Suñol, C., Garcia, D. A., Bujons, J., Kristofikova, Z., Matyas, L., Babot, Z., et al. (2006). Activity of B-nor analogues of neurosteroids on the GABAA receptor in primary neuronal cultures. Journal of Medicinal Chemistry, 49, 3225–3234.PubMedCrossRefGoogle Scholar
  25. 25.
    Fonfria, E., Rodriguez-Farre, E., & Suñol, C. (2001). Mercury interaction with the GABAA receptor modulates the benzodiazepine binding site in primary cultures of mouse cerebellar granule cells. Neuropharmacology, 41, 819–833.PubMedCrossRefGoogle Scholar
  26. 26.
    Biltonen, R., & Lichtenberg, D. (1993). The use of differential scanning calorimetry as a tool to characterize liposome preparations. Chemistry and Physics of Lipids, 64, 129–142.CrossRefGoogle Scholar
  27. 27.
    Sancar, F., & Czajkowski, C. (2011). Allosteric modulators induce distinct movements at the GABA-binding site interface of the GABAA receptor. Neuropharmacology, 60, 520–528.PubMedCrossRefGoogle Scholar
  28. 28.
    Sigel, E., & Luscher, B. (2011). A closer look at the high affinity benzodiazepine binding site on GABAA receptors. Current Topics in Medicinal Chemistry, 11, 241–246.PubMedCrossRefGoogle Scholar
  29. 29.
    Vale, C., Pomes, A., Rodriguez-Farre, E., & Suñol, C. (1997). Allosteric interactions between gamma-aminobutyric acid, benzodiazepine and picrotoxinin binding sites in primary cultures of cerebellar granule cells. Differential effects induced by gamma- and delta-hexachlorocyclohexane. European Journal of Pharmacology, 319, 343–353.PubMedCrossRefGoogle Scholar
  30. 30.
    Vale, C., Vilaro, M. T., Rodriguez-Farre, E., & Suñol, C. (1999). Effects of the conformationally restricted GABA analogues, cis- and trans-4-aminocrotonic acid, on GABA neurotransmission in primary neuronal cultures. Journal of Neuroscience Research, 57, 95–105.PubMedCrossRefGoogle Scholar
  31. 31.
    Bali, M., & Akabas, M. (2004). Defining the propofol binding site location on the GABAA receptor. Molecular Pharmacology, 65, 68–76.PubMedCrossRefGoogle Scholar
  32. 32.
    De Vincenzi, M., Stammati, A., De Vincenzi, A., & Silano, M. (2004). Constituents of aromatic plants: Carvacrol. Fitoterapia, 75, 801–804.PubMedCrossRefGoogle Scholar
  33. 33.
    Ipek, E., Tuylu, B., & Zeytinoglu, H. (2003). Effects of carvacrol on sister chromatid exchanges in human lymphocyte cultures. Cytotechnology, 43, 145–148.PubMedCrossRefGoogle Scholar
  34. 34.
    Baser, K. (2008). Biological and pharmacological activities of carvacrol and carvacrol bearing essential oils. Current Pharmaceutical Design, 14, 3106–3119.PubMedCrossRefGoogle Scholar
  35. 35.
    Jukic, M., Politeo, O., Maksimovic, M., & Milos, M. (2007). In vitro acetylcholinesterase inhibitory properties of thymol, carvacrol and their derivatives thymoquinone and thymohydroquinone. Phytotherapy Research, 21, 259–261.PubMedCrossRefGoogle Scholar
  36. 36.
    Melo, F., Venancio, E., de Sousa, D., de Franca Fonteles, M., de Vasconcelos, S., Viana, G., et al. (2010). Anxiolytic-like effect of carvacrol (5-isopropyl-2-methylphenol) in mice: Involvement with GABAergic transmission. Fundamental & Clinical Pharmacology, 24, 437–443.Google Scholar
  37. 37.
    Kim, S., Oh, O., Min, H., Park, E., Kim, Y., Park, H., et al. (2003). Eugenol suppresses cyclooxygenase-2 expression in lipopolysaccharide-stimulated mouse macrophage RAW264.7 cells. Life Sciences, 73, 337–348.PubMedCrossRefGoogle Scholar
  38. 38.
    Ohkubo, T., & Shibata, M. (1997). The selective capsaicin antagonist capsazepine abolishes the antinociceptive action of eugenol and guaiacol. Journal of Dental Research, 76, 848–851.PubMedCrossRefGoogle Scholar
  39. 39.
    Cho, J., Kim, T., Lim, J., & Song, J. (2008). Effects of eugenol on Na+ currents in rat dorsal root ganglion neurons. Brain Research, 1243, 53–62.PubMedCrossRefGoogle Scholar
  40. 40.
    Irie, Y., & Keung, W. (2003). Rhizoma acori graminei and its active principles protect PC-12 cells from the toxic effect of amyloid-beta peptide. Brain Research, 963, 282–289.PubMedCrossRefGoogle Scholar
  41. 41.
    Wie, M. B., Won, M. H., Lee, K. H., Shin, J. H., Lee, J. C., Suh, H. W., et al. (1997). Eugenol protects neuronal cells from excitotoxic and oxidative injury in primary cortical cultures. Neuroscience Letters, 225, 93–96.PubMedCrossRefGoogle Scholar
  42. 42.
    Won, M. H., Lee, J. C., Kim, Y. H., Song, D. K., Suh, H. W., Oh, Y. S., et al. (1998). Postischemic hypothermia induced by eugenol protects hippocampal neurons from global ischemia in gerbils. Neuroscience Letters, 254, 101–104.PubMedCrossRefGoogle Scholar
  43. 43.
    Guenette, S., Beaudry, F., Marier, J., & Vachon, P. (2006). Pharmacokinetics and anesthetic activity of eugenol in male Sprague-Dawley rats. Journal of Veterinary Pharmacology and Therapeutics, 29, 265–270.PubMedCrossRefGoogle Scholar
  44. 44.
    Müller, M., Pape, H. C., Speckmann, E. J., & Gorji, A. (2006). Effect of eugenol on spreading depression and epileptiform discharges in rat neocortical and hippocampal tissues. Neuroscience, 140, 743–751.PubMedCrossRefGoogle Scholar
  45. 45.
    Aoshima, H., & Hamamoto, K. (1999). Potentiation of GABAA receptors expressed in Xenopus oocytes by perfume and phytoncid. Bioscience, Biotechnology, and Biochemistry, 63, 743–748.PubMedCrossRefGoogle Scholar
  46. 46.
    Ultee, A., Kets, E. P., & Smid, E. J. (1999). Mechanisms of action of carvacrol on the food-borne pathogen Bacillus cereus. Applied and Environment Microbiology, 65, 4606–4610.Google Scholar
  47. 47.
    Gill, A., & Holley, R. (2006). Inhibition of membrane bound ATPases of Escherichia coli and Listeria monocytogenes by plant oil aromatics. International Journal of Food Microbiology, 111, 170–174.PubMedCrossRefGoogle Scholar
  48. 48.
    Gill, A., & Holley, R. (2006). Disruption of Escherichia coli, Listeria monocytogenes and Lactobacillus sakei cellular membranes by plant oil aromatics. International Journal of Food Microbiology, 108, 1–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Wong, F. W., Lin, L., & Lim, D. C. (2009). Drug and herb interactions: Searching the web. Australian Family Physician, 38, 627–633.PubMedGoogle Scholar
  50. 50.
    Ang-Lee, M., Moss, J., & Yuan, C. (2001). Herbal medicines and perioperative care. JAMA, 286, 208–216.PubMedCrossRefGoogle Scholar
  51. 51.
    Carrasco, M., Vallejo, J., Pardo-de-Santayana, M., Peral, D., Martin, M., & Altimiras, J. (2009). Interactions of Valeriana officinalis L. and Passiflora incarnata L. in a patient treated with lorazepam. Phytotherapy Research, 23, 1795–1796.PubMedCrossRefGoogle Scholar
  52. 52.
    Vasiliadis, H. M., & Tempier, R. (2011). Reporting on the prevalence of drug and alternative health product use for mental health reasons: Results from a national population survey. Journal of Population Therapeutics and Clinical Pharmacology, 18, e33–e43.PubMedGoogle Scholar
  53. 53.
    Chen, X., Serag, E., Sneed, K., Liang, J., Chew, H., Pan, S., et al. (2011). Clinical herbal interactions with conventional drugs: From molecules to maladies. Current Medicinal Chemistry, 18, 4836–4850.PubMedCrossRefGoogle Scholar
  54. 54.
    Cupp, M. (2000). Toxicology and clinical pharmacology of herbal products. Totowa, NJ: Humana Press.CrossRefGoogle Scholar
  55. 55.
    Fugh-Berman, A. (2000). Herb-drug interactions. Lancet, 355, 134–138.PubMedCrossRefGoogle Scholar
  56. 56.
    Kennedy, D., & Seely, D. (2010). Clinically based evidence of drug-herb interactions: A systematic review. Expert Opinion on Drug Safety, 9, 79–124.PubMedCrossRefGoogle Scholar
  57. 57.
    Polzin, G. M., Stanfill, S. B., Brown, C. R., Ashley, D. L., & Watson, C. H. (2007). Determination of eugenol, anethole, and coumarin in the mainstream cigarette smoke of Indonesian clove cigarettes. Food and Chemical Toxicology, 45, 1948–1953.PubMedCrossRefGoogle Scholar
  58. 58.
    Stanfill, S. B., Brown, C. R., Yan, X. J., Watson, C. H., & Ashley, D. L. (2006). Quantification of flavor-related compounds in the unburned contents of bidi and clove cigarettes. Journal of Agriculture and Food Chemistry, 54, 8580–8588.CrossRefGoogle Scholar
  59. 59.
    Carlson, B. X., Engblom, A. C., Kristiansen, U., Schousboe, A., & Olsen, R. W. (2000). A single glycine residue at the entrance to the first membrane-spanning domain of the gamma-aminobutyric acid type A receptor beta(2) subunit affects allosteric sensitivity to GABA and anesthetics. Molecular Pharmacology, 57, 474–484.PubMedGoogle Scholar
  60. 60.
    Prete, P. S., Domingues, C. C., Meirelles, N. C., Malheiros, S. V., Goni, F. M., de Paula, E., et al. (2011). Multiple stages of detergent–erythrocyte membrane interaction—A spin label study. Biochimica et Biophysica Acta, 1808, 164–170.PubMedCrossRefGoogle Scholar
  61. 61.
    Reiner, G. N., Perillo, M. A., & Garcia, D. A. (2013). Effects of propofol and other GABAergic phenols on membrane molecular organization. Colloids and Surfaces B: Biointerfaces, 101, 61–67.PubMedCrossRefGoogle Scholar
  62. 62.
    Prendergast, F. G., Haugland, R. P., & Callahan, P. J. (1981). 1-[4-(Trimethylamino)phenyl]-6-phenylhexa-1,3,5-triene: Synthesis, fluorescence properties, and use as a fluorescence probe of lipid bilayers. Biochemistry, 20, 7333–7338.PubMedCrossRefGoogle Scholar
  63. 63.
    Leonenko, Z. V., Finot, E., Ma, H., Dahms, T. E., & Cramb, D. T. (2004). Investigation of temperature-induced phase transitions in DOPC and DPPC phospholipid bilayers using temperature-controlled scanning force microscopy. Biophysical Journal, 86, 3783–3793.PubMedCrossRefGoogle Scholar
  64. 64.
    Witzke, S., Duelund, L., Kongsted, J., Petersen, M., Mouritsen, O. G., & Khandelia, H. (2010). Inclusion of terpenoid plant extracts in lipid bilayers investigated by molecular dynamics simulations. The Journal of Physical Chemistry B, 114, 15825–15831.PubMedCrossRefGoogle Scholar
  65. 65.
    Guenette, S., Helie, P., Beaudry, F., & Vachon, P. (2007). Eugenol for anesthesia of African clawed frogs (Xenopus laevis). Veterinary Anaesthesia and Analgesia, 34, 164–170.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • G. N. Reiner
    • 1
    • 2
  • L. Delgado-Marín
    • 1
  • N. Olguín
    • 2
  • S. Sánchez-Redondo
    • 2
  • M. Sánchez-Borzone
    • 1
  • E. Rodríguez-Farré
    • 2
  • C. Suñol
    • 2
  • D. A. García
    • 1
  1. 1.Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT)CONICET-Universidad Nacional de CórdobaCórdobaArgentina
  2. 2.Department of Neurochemistry and NeuropharmacologyInstitut d’Investigacions Biomèdiques de Barcelona, IIBB-CSIC-IDIBAPS and CIBERESPBarcelonaSpain

Personalised recommendations