Cell Biochemistry and Biophysics

, Volume 66, Issue 3, pp 421–429

Peroxisome Proliferator-Activated Receptor γ Ligands Retard Cultured Vascular Smooth Muscle Cells Calcification Induced by High Glucose

  • Ye-Bo Zhou
  • Jing Zhang
  • Ding-Qiong Peng
  • Jin-Rui Chang
  • Yan Cai
  • Yan-Rong Yu
  • Mo-Zhi Jia
  • Wei Wu
  • You-Fei Guan
  • Chao-Shu Tang
  • Yong-Fen Qi
Original Paper


Peroxisome proliferator-activated receptor γ (PPARγ) and its ligands have profound effects on glucose homeostasis, cardiovascular diseases, and bone metabolism. To explore the pathophysiological roles of PPARγ in diabetes with concomitant vascular calcification, we investigated changes in PPARγ expression and the effect of the PPARγ ligands troglitazone and rosiglitazone on vascular smooth muscle cell (VSMC) calcification induced by high glucose (HG, 25 mmol/L). Compared with low glucose, HG-induced VSMC calcification, and PPARγ mRNA, protein level was decreased. Troglitazone and rosiglitazone treatment markedly attenuated the VSMC calcification, whereas PPARγ antagonist GW9662 abolished the effect of rosiglitazone on calcification. Pretreatment of VSMCs with rosiglitazone, but not troglitazone, restored the loss of lineage marker expression: the protein levels of α-actin and SM-22α were increased 52 % (P < 0.05) and 53.1 % (P < 0.01), respectively, as compared with HG alone. Troglitazone and rosiglitazone reversed the change in bone-related protein expression induced by HG: decreased the mRNA levels of osteocalcin, bone morphogenetic protein 2 (BMP2), and core binding factor α 1 (Cbfα-1) by 26.9 % (P > 0.05), 50.0 % (P < 0.01), and 24.4 % (P < 0.05), and 48.4 % (P < 0.05), 41.4 % (P < 0.01) and 56.2 % (P < 0.05), respectively, and increased that of matrix Gla protein (MGP) 84.2 % (P < 0.01) and 70.0 %, respectively (P < 0.05), as compared with HG alone. GW9662 abolished the effect of rosiglitazone on Cbfα-1 and MGP expression. PPARγ ligands can inhibit VSMCs calcification induced by high glucose.


High glucose PPARγ Vascular smooth muscle cells Calcification 


  1. 1.
    Rydén, L. (2008). What are the risk factors for progression of coronary artery calcification in patients with type 2 diabetes? Nature Clinical Practice Cardiovascular Medicine, 5, 370–381.PubMedCrossRefGoogle Scholar
  2. 2.
    Chen, N. X., Duan, D., O’Neill, K. D., & Moe, S. M. (2006). High glucose increases the expression of Cbfa1 and BMP-2 and enhances the calcification of vascular smooth muscle cells. Nephrology, Dialysis, Transplantation, 21, 3435–3442.PubMedCrossRefGoogle Scholar
  3. 3.
    Wang, C. C., Sorribas, V., Sharma, G., Levi, M., & Draznin, B. (2007). Insulin attenuates vascular smooth muscle calcification but increases vascular smooth muscle cell phosphate transport. Atherosclerosis, 195, e65–e75.PubMedCrossRefGoogle Scholar
  4. 4.
    Chen, B. H., Jiang, D. Y., & Tang, L. S. (2006). Advanced glycation end-products induce apoptosis involving the signaling pathways of oxidative stress in bovine retinal pericytes. Life Sciences, 79, 1040–1048.PubMedCrossRefGoogle Scholar
  5. 5.
    Kumeda, Y., Inaba, M., Shoji, S., Ishimura, E., Inariba, H., Yabe, S., et al. (2008). Significant correlation of glycated albumin, but not glycated haemoglobin, with arterial stiffening in haemodialysis patients with type 2 diabetes. Clinical Endocrinology (Oxf), 69, 556–561.CrossRefGoogle Scholar
  6. 6.
    Qiao, J. H., Mertens, R. B., Fishbein, M. C., & Geller, S. A. (2003). Cartilaginous metaplasia in calcified diabetic peripheral vascular disease: morphologic evidence of enchondral ossification. Human Pathology, 34, 402–407.PubMedCrossRefGoogle Scholar
  7. 7.
    Ishimura, E., Okuno, S., Kitatani, K., Maekawa, K., Izumotani, T., Yamakawa, T., et al. (2004). C-reactive protein is a significant predictor of vascular calcification of both aorta and hand arteries. Seminars in Nephrology, 24, 408–412.PubMedCrossRefGoogle Scholar
  8. 8.
    The Diabetes Control and Complications Trial Research Group. (1995). Effect of intensive diabetes management on macrovascular events and risk factors in the diabetes control and complications trial. American Journal of Cardiology, 75, 894–903.CrossRefGoogle Scholar
  9. 9.
    Nathan, D. M., Lachin, J., Cleary, P., Orchard, T., Brillon, D. J., Backlund, J. Y., et al. (2003). Intensive diabetes therapy and carotid intima-media thickness in type 1 diabetes mellitus. New England Journal of Medicine, 348, 2294–2303.PubMedCrossRefGoogle Scholar
  10. 10.
    Nathan, D. M., Cleary, P. A., Backlund, J. Y., Genuth, S. M., Lachin, J. M., Orchard, T. J., et al. (2005). Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. New England Journal of Medicine, 353, 2643–2653.PubMedCrossRefGoogle Scholar
  11. 11.
    Kliewer, S. A., Xu, H. E., Lambert, M. H., & Willson, T. M. (2001). Peroxisome proliferator-activated receptors: From genes to physiology. Recent Progress Hormone Research, 56, 239–263.CrossRefGoogle Scholar
  12. 12.
    Spiegelman, B. M. (1997). Peroxisome proliferator-activated receptor gamma: A key regulator of adipogenesis and systemic insulin sensitivity. European Journal of Medical Research, 2, 457–464.PubMedGoogle Scholar
  13. 13.
    Ibrahimi, A., Teboul, L., Gaillard, D., Amri, E. Z., Ailhaud, G., Young, P., et al. (1994). Evidence for a common mechanism of action for fatty acids and thiazolidinedione antidiabetic agents on gene expression in preadipose cells. Molecular Pharmacology, 46, 1070–1076.PubMedGoogle Scholar
  14. 14.
    Lehmann, J. M., Moore, L. B., Smith-Oliver, T. A., Wilkison, W. O., Willson, T. M., & Kliewer, S. A. (1995). An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). Journal of Biological Chemistry, 270, 12953–12956.PubMedCrossRefGoogle Scholar
  15. 15.
    Marx, N., Bourcier, T., Sukhova, G. K., Libby, P., & Plutzky, J. (1999). PPARgamma activation in human endothelial cells increases plasminogen activator inhibitor type-1 expression: PPARgamma as a potential mediator in vascular disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 19, 546–551.PubMedCrossRefGoogle Scholar
  16. 16.
    Law, R. E., Goetze, S., Xi, X. P., Jackson, S., Kawano, Y., Demer, L., et al. (2000). Expression and function of PPARgamma in rat and human vascular smooth muscle cells. Circulation, 101, 1311–1318.PubMedCrossRefGoogle Scholar
  17. 17.
    Takano, H., & Komuro, I. (2009). Peroxisome proliferator-activated receptor gamma and cardiovascular diseases. Circulation Journal, 73, 214–220.PubMedCrossRefGoogle Scholar
  18. 18.
    Sugawara, A., Uruno, A., Kudo, M., Matsuda, K., Yang, C. W., & Ito, S. (2010). Effects of PPARγ on hypertension, atherosclerosis, and chronic kidney disease. Endocrine Journal, 57, 847–852.PubMedCrossRefGoogle Scholar
  19. 19.
    Stunes, A. K., Westbroek, I., Gustafsson, B. I., Fossmark, R., Waarsing, J. H., Eriksen, E. F., et al. (2011). The peroxisome proliferator-activated receptor (PPAR) alpha agonist fenofibrate maintains bone mass, while the PPAR gamma agonist pioglitazone exaggerates bone loss, in ovariectomized rats. BMC Endocrine Disorders, 26(11), 11.CrossRefGoogle Scholar
  20. 20.
    Syversen, U., Aune, G., & Thommesen, L. (2003). PPAR-Alpha agonists increase bone mineral density in female rats. Abstract at ASBMR 25th Annual Meeting Minneapolis, Minnesota, USA.Google Scholar
  21. 21.
    Syversen, U., Stunes, A.K., Gustafsson, B.I., Obrant, K.J., Nordsletten, L., Berge, R., et al. (2009). Different skeletal effects of the peroxisome proliferator activated receptor (PPAR)α agonist fenofibrate and the PPARγ agonist pioglitazone. BMC Endocrine Disorder, 9, 10. doi:10.1186/1472-6823-9-10.
  22. 22.
    Schwartz, A. V., Sellmeyer, D. E., Vittinghoff, E., Palermo, L., Lecka-Czernik, B., Feingold, K. R., et al. (2006). Thiazolidinedione use and bone loss in older diabetic adults. Journal of Clinical Endocrinology and Metabolism, 91, 3349–3354.PubMedCrossRefGoogle Scholar
  23. 23.
    Yaturu, S., Bryant, B., & Jain, S. K. (2007). Thiazolidinedione treatment decreases bone mineral density in type 2 diabetic men. Diabetes Care, 30, 1574–1576.PubMedCrossRefGoogle Scholar
  24. 24.
    Grey, A., Bolland, M., Gamble, G., Wattie, D., Horne, A., Davidson, J., et al. (2007). The peroxisome proliferator-activated receptor-gamma agonist rosiglitazone decreases bone formation and bone mineral density in healthy postmenopausal women: a randomized, controlled trial. Journal of Clinical Endocrinology and Metabolism, 92, 1305–1310.PubMedCrossRefGoogle Scholar
  25. 25.
    Abedin, M., Lim, J., Tang, T. B., Park, D., Demer, L. L., & Tintut, Y. (2006). N-3 fatty acids inhibit vascular calcification via the p38-mitogen-activated protein kinase and peroxisome proliferator-activated receptor-gamma pathways. Circulation Research, 98, 727–729.PubMedCrossRefGoogle Scholar
  26. 26.
    Gaillard, V., Casellas, D., Seguin-Devaux, C., Schohn, H., Dauça, M., Atkinson, J., et al. (2005). Pioglitazone improves aortic wall elasticity in a rat model of elastocalcinotic arteriosclerosis. Hypertension, 46, 372–379.PubMedCrossRefGoogle Scholar
  27. 27.
    Yu, J., Jin, N., Wang, G., Zhang, F., Mao, J., & Wang, X. (2007). Peroxisome proliferator-activated receptor gamma agonist improves arterial stiffness in patients with type 2 diabetes mellitus and coronary artery disease. Metabolism, 56, 1396–1401.PubMedCrossRefGoogle Scholar
  28. 28.
    Paulik, M. A., & Lenhard, J. M. (1997). Thiazolidinediones inhibit alkaline phosphatase activity while increasing expression of uncoupling protein, and increasing mitochondrial mass in C3H10T1/2 cells. Cell and Tissue Research, 290, 79–87.PubMedCrossRefGoogle Scholar
  29. 29.
    Fu, M., Zhang, J., Lin, Y. Y., Zhu, X., Willson, T. M., & Chen, Y. E. (2002). Activation of peroxisome proliferator-activated receptor gamma inhibits osteoprotegerin gene expression in human aortic smooth muscle cells. Biochemical and Biophysical Research Communications, 294, 597–601.PubMedCrossRefGoogle Scholar
  30. 30.
    Mbalaviele, G., Abu-Amer, Y., Meng, A., Jaiswal, R., Beck, S., Pittenger, M. F., et al. (2000). Activation of peroxisome proliferator-activated receptor-gamma pathway inhibits osteoclast differentiation. Journal of Biological Chemistry, 275, 14388–14393.PubMedCrossRefGoogle Scholar
  31. 31.
    Khan, E., & Abu-Amer, Y. (2003). Activation of peroxisome proliferator-activated receptor-gamma inhibits differentiation of preosteoblasts. Journal of Laboratory and Clinical Medicine, 142, 29–34.PubMedCrossRefGoogle Scholar
  32. 32.
    Shioi, A., Nishizawa, Y., Jono, S., Koyama, H., Hosoi, M., & Morii, H. (1995). Betaglycerophosphate accelerates calcification in cultured bovine vascular smooth muscle cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 15, 2003–2009.PubMedCrossRefGoogle Scholar
  33. 33.
    Zhou, Y. B., Jin, S. J., Cai, Y., Teng, X., Chen, L., Tang, C. S., et al. (2009). Lanthanum acetate inhibits vascular calcification induced by vitamin D3 plus nicotine in rats. Experimental Biology and Medicine, 234, 908–917.PubMedCrossRefGoogle Scholar
  34. 34.
    Sodhi, C. P., Phadke, S. A., Batlle, D., & Sahai, A. (2001). Hypoxia stimulates osteopontin expression and proliferation of cultured vascular smooth muscle cells: Potentiation by high glucose. Diabetes, 50, 1482–1490.PubMedCrossRefGoogle Scholar
  35. 35.
    Johnson, R. C., Leopold, J. A., & Loscalzo, J. (2006). Vascular calcification: Pathobiological mechanisms and clinical implications. Circulation Research, 99, 1044–1059.PubMedCrossRefGoogle Scholar
  36. 36.
    Shao, J. S., Cai, J., & Towler, D. A. (2006). Molecular mechanisms of vascular calcification: Lessons learned from the aorta. Arteriosclerosis, Thrombosis, and Vascular Biology, 26, 1423–1430.PubMedCrossRefGoogle Scholar
  37. 37.
    Demer, L. L., & Tintut, Y. (2008). Vascular calcification: Pathobiology of a multifaceted disease. Circulation, 117, 2938–2948.PubMedCrossRefGoogle Scholar
  38. 38.
    Steitz, S. A., Speer, M. Y., Curinga, G., Yang, H. Y., Haynes, P., Aebersold, R., et al. (2001). Smooth muscle cell phenotypic transition associated with calcification: Upregulation of Cbfa1 and downregulation of smooth muscle lineage markers. Circulation Research, 89, 1147–1154.PubMedCrossRefGoogle Scholar
  39. 39.
    Okura, T., Kurata, M., Enomoto, D., Jotoku, M., Nagao, T., Desilva, V. R., et al. (2010). Undercarboxylated osteocalcin is a biomarker of carotid calcification in patients with essential hypertension. Kidney Blood Pressure Research, 33, 66–71.PubMedCrossRefGoogle Scholar
  40. 40.
    Shimizu, T., Tanaka, T., Iso, T., Matsui, H., Ooyama, Y., Kawai-Kowase, K., et al. (2011). Notch signaling pathway enhances bone morphogenetic protein 2 (BMP2) responsiveness of Msx2 gene to induce osteogenic differentiation and mineralization of vascular smooth muscle cells. Journal of Biological Chemistry, 286, 19138–19148.PubMedCrossRefGoogle Scholar
  41. 41.
    Engelse, M. A., Neele, J. M., Bronckers, A. L., Pannekoek, H., & de Vries, C. J. (2001). Vascular calcification: expression patterns of the osteoblast-specific gene core binding factor alpha-1 and the protective factor matrix gla protein in human atherogenesis. Cardiovascular Research, 52, 281–289.PubMedCrossRefGoogle Scholar
  42. 42.
    Atkins, K. B., Northcott, C. A., Watts, S. W., & Brosius, F. C. (2005). Effects of PPAR-gamma ligands on vascular smooth muscle marker expression in hypertensive and normal arteries. American Journal of Physiology Heart Circulatory Physiology, 288, H235–H243.PubMedCrossRefGoogle Scholar
  43. 43.
    Luo, G., Ducy, P., McKee, M. D., Pinero, G. J., Loyer, E., Behringer, R. R., et al. (1997). Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature, 386, 78–81.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Ye-Bo Zhou
    • 1
    • 2
  • Jing Zhang
    • 3
  • Ding-Qiong Peng
    • 4
  • Jin-Rui Chang
    • 5
  • Yan Cai
    • 5
  • Yan-Rong Yu
    • 5
  • Mo-Zhi Jia
    • 5
  • Wei Wu
    • 5
  • You-Fei Guan
    • 5
  • Chao-Shu Tang
    • 1
    • 5
  • Yong-Fen Qi
    • 1
    • 5
  1. 1.The Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing An Zhen HospitalCapital Medical University, Ministry of EducationBeijingChina
  2. 2.Department of PhysiologyNanjing Medical UniversityNanjingChina
  3. 3.School of Physical Education and SportsBeijing Normal UniversityBeijingChina
  4. 4.Department of EndocrinologyThe General Hospital of Civil Aviation Administration of ChinaBeijingChina
  5. 5.Key Laboratory of Molecular Cardiovascular ScienceMinistry of Education, Peking University Health Science CenterBeijingChina

Personalised recommendations