Cell Biochemistry and Biophysics

, Volume 66, Issue 2, pp 389–396 | Cite as

Dynamic Changes of Cerebral-Specific Proteins in Full-Term Newborns with Hypoxic–Ischemic Encephalopathy

  • Fang LiuEmail author
  • Suyan Yang
  • Zhifang Du
  • Zhimei Guo
Translational Biomedical Research


The aim of this study was to observe the dynamic changes of serum brain-derived neurotrophic factor (BDNF), S-100B, and Tau proteins levels in full-term newborns with hypoxic–ischemic encephalopathy (HIE) and to discuss their significance in brain damage. Serum samples of 28 full-term newborns diagnosed with HIE and 20 controls were obtained in the first 24 h of life. Another serum samples were also taken, respectively, at 3 and 7 days of life in HIE group. The concentrations of BDNF, S-100B, and Tau proteins were measured by the enzyme-linked immunosorbent assay method. Mean concentrations of BDNF, S-100B, and Tau proteins among different time period and in different grades of HIE group were calculated and compared. Compared with the control group, serum BDNF and proteins S-100B levels in HIE group were significantly elevated in 24 h after birth (P < 0.05) and their concentrations were also significantly higher among patients with mod-severe HIE compared to those with mild HIE at 24 h and 7 days after asphyxia (P < 0.05). Regardless of whether mod-severe HIE or mild HIE, there were no significant difference of serum BDNF and proteins S-100B among the three different time periods. There was no difference in Tau protein levels between HIE group and control group, also no difference between mod-severe HIE group and mild HIE group. BDNF and proteins S-100B are up-regulated early in asphyxia neonates with HIE; and the released amount of BDNF and proteins S-100B from nerve center system correlate with the extent of encephalopathy.


Perinatal asphyxia Hypoxic–ischemic encephalopathy Brain-derived neurotrophic factor S-100B protein Tau protein 



We thank XU Zheng, Vice Director, Laboratorial Center for Clinical Research, Bethune International Peace Hospital, for his assistance. We are indebted to have used the funds from Hebei Province Population and Family Planning Commission of Science and Technology Research Program (2010-A24).


  1. 1.
    Dixon, G., Badawi, N., Kurinczuk, J. J., Keogh, J. M., Silburn, S. R., Zubrick, S. R., et al. (2002). Early developmental outcomes after newborn encephalopathy. Pediatrics, 109(1), 26–33.PubMedCrossRefGoogle Scholar
  2. 2.
    Graham, E. M., Ruis, K. A., Hartman, A. L., Northington, F. J., & Fox, H. E. (2008). A systematic review of the role of intrapartum hypoxia-ischemia in the causation of neonatal encephalopathy. American Journal of Obstetrics and Gynecology, 199(6), 587–595.PubMedCrossRefGoogle Scholar
  3. 3.
    Vannucci, R. C., & Perlman, J. M. (1997). Interventions for perinatal hypoxic–ischemic encephalopathy. Pediatrics, 100(6), 1004–1014.PubMedCrossRefGoogle Scholar
  4. 4.
    Walton, M., Connor, B., Lawlor, P., Young, D., Sirimanne, E., Gluckman, P., et al. (1999). Neuronal death and survival in two models of hypoxic–ischemic brain damage. Brain Research. Brain Research Reviews, 29, 137–168.PubMedCrossRefGoogle Scholar
  5. 5.
    Han, B. H., & Holtzman, D. M. (2000). BDNF protects the neonatal brain from hypoxic–ischemic injury in vivo via the ERK pathway. Journal of Neuroscience, 20(15), 5775–57815.PubMedGoogle Scholar
  6. 6.
    Almli, C. R., Levy, T. J., Han, B. H., Shah, A. R., Gidday, J. M., & Holtzman, D. M. (2000). BDNF protects against spatial memory deficits following neonatal hypoxia-ischemia. Experimental Neurology, 166(1), 99–114.PubMedCrossRefGoogle Scholar
  7. 7.
    Imam, S. S., Gad, G. I., Atef, S. H., & Shawky, M. A. (2009). Cord blood brain neurotrophic factor: Diagnostic and prognostic marker in fullterm newborns with perinatal asphyxia. Pakistan Journal of Biological Sciences, 12(23), 1498–1509.PubMedCrossRefGoogle Scholar
  8. 8.
    Korfias, S., Stranjalis, G., Papadimitriou, A., Psachoulia, C., Daskalakis, G., Antsaklis, A., et al. (2006). Serum S-100B protein as a biochemical marker of brain injury: A review of current concepts. Current Medicinal Chemistry, 13(30), 3719–3731.PubMedCrossRefGoogle Scholar
  9. 9.
    Hesse, C., Rosengren, L., Andreasen, N., Davidsson, P., Vanderstichele, H., Vanmechelen, E., et al. (2001). Transient increase in total tau but not phosphotau in human cerebrospinal fluid after acute stroke. Neuroscience Letters, 297(3), 187–190.PubMedCrossRefGoogle Scholar
  10. 10.
    The Group of Neonatology, Chinese Pediatric Society, Chinese Medical Association. (2005). Diagnostic criteria for neonatal hypoxic–ischemic encephalopathy. Chinese Journal of Pediatrics, 43(8), 584–585.Google Scholar
  11. 11.
    Samat, H. B. & Sarnat, M. S. (1976). Neonatal encephalopathy following fetal distress. A clinical and electroencephalographic study. Archives of Neurology, 33(10), 696–705.Google Scholar
  12. 12.
    Bao, X. (2011). Neonatal behavioral psychology. Shao X., Ye H., & Qiu X (Eds.). Practice of Neonatology, 4th ed. Beijing: People’s Medical Publishing House (PMPH), pp. 82–86.Google Scholar
  13. 13.
    Acheson, A., Conover, J. C., Fandl, J. P., DeChiara, T. M., Russell, M., Thadani, A., et al. (1995). A BDNF autocrine loop in adult sensory neurons prevents cell death. Nature, 374(6521), 450–453.PubMedCrossRefGoogle Scholar
  14. 14.
    Huang, E. J., & Reichardt, L. F. (2001). Neurotrophins: Roles in neuronal development and function. Annual Review of Neuroscience, 24, 677–736.PubMedCrossRefGoogle Scholar
  15. 15.
    Yamada, K., & Nabeshima, T. (2003). Brain-derived neurotrophic factor/TrkB signaling in memory processes. Journal of Pharmacological Sciences, 91(4), 267–270.PubMedCrossRefGoogle Scholar
  16. 16.
    Bekinschtein, P., Cammarota, M., Katche, C., Slipczuk, L., Rossato, J. I., Goldin, A., et al. (2008). BDNF is essential to promote persistence of long-term memory storage. Proceedings of the National Academy of Sciences USA, 105(7), 2711–2716.CrossRefGoogle Scholar
  17. 17.
    Patapoutian, A., & Reichardt, L. F. (2001). Trk receptors: mediators of neurotrophin action. Current Opinion in Neurobiology, 11(3), 272–280.PubMedCrossRefGoogle Scholar
  18. 18.
    Fernandes, C. C., Pinto-Duarte, A., Ribeiro, J. A., & Sebastião, A. M. (2008). Postsynaptic action of brain-derived neurotrophic factor attenuates alpha7 nicotinic acetylcholine receptor-mediated responses in hippocampal interneurons. Journal of Neuroscience, 28(21), 5611–5618.PubMedCrossRefGoogle Scholar
  19. 19.
    Meng, M., Zhiling, W., Hui, Z., Shengfu, L., Dan, Y., & Jiping, H. (2005). Cellular levels of TrkB and MAPK in the neuroprotective role of BDNF for embryonic rat cortical neurons against hypoxia in vitro. International Journal of Developmental Neuroscience, 23(6), 515–521.PubMedCrossRefGoogle Scholar
  20. 20.
    Korhonen, L., Riikonen, R., Nawa, H., & Lindholm, D. (1998). Brain derived neurotrophic factor is increased in cerebrospinal fluid of children suffering from asphyxia. Neuroscience Letters, 240(3), 151–154.PubMedCrossRefGoogle Scholar
  21. 21.
    Fleiss, B., Coleman, H. A., Castillo-Melendez, M., Ireland, Z., Walker, D. W., & Parkington, H. C. (2011). Effects of birth asphyxia on neonatal hippocampal structure and function in the spiny mouse. International Journal of Developmental Neuroscience, 297, 757–766.CrossRefGoogle Scholar
  22. 22.
    Riikonen, R. S., Korhonen, L. T., & Lindholm, D. B. (1999). Cerebrospinal nerve growth factor: A marker of asphyxia? Pediatric Neurology, 20(2), 137–141.PubMedCrossRefGoogle Scholar
  23. 23.
    Karege, F., Schwald, M., & Cisse, M. (2002). Postnatal development profile of brain derived neurotrophic factor in rat’s brain and platelets. Neuroscience Letters, 2002(328), 262–264.Google Scholar
  24. 24.
    Nikolaou, K. E., Malamitsi-Puchner, A., Boutsikou, T., Economou, E., Boutsikou, M., Puchner, K. P., et al. (2006). The varying patterns of neurotrophin changes in the perinatal period. Annals of the New York Academy of Sciences, 1092, 426–433.PubMedCrossRefGoogle Scholar
  25. 25.
    Blanquet, P. R., Mariani, J., & Derer, P. (2003). A calcium/calmodulin kinase pathway connects brain-derived neurotrophic factor to the cycli camp responsive transcription factor in the rat hippocampus. Neuroscience, 118(2), 477–490.PubMedCrossRefGoogle Scholar
  26. 26.
    Tremblay, R., Hewitt, K., Lesiuk, H., Mealing, G., Morley, P., & Durkin, J. P. (1999). Evidence that brain-derived neurotrophic factor neuro protection is linked to it’s ability to reverse the NMDA-induced inactivation of protein kinas C in cortical neurons. Journal of Neurochemistry, 72(1), 102–111.PubMedCrossRefGoogle Scholar
  27. 27.
    Bertsch, T., Casarin, W., Kretschmar, M., Zimmer, W., Walter, S., Sommer, C., et al. (2001). Protein S-100B: A serum marker for ischemic and infectious injury of cerebral tissue. Clinical Chemistry and Laboratory Medicine, 39(4), 319–323.PubMedGoogle Scholar
  28. 28.
    Bitsch, A., Horn, C., Kemmling, Y., Seipelt, M., Hellenbrand, U., Stiefel, M., et al. (2002). Serum tau protein level as a marker of axonal damage in acute ischemic stroke. European Neurology, 47(1), 45–51.PubMedCrossRefGoogle Scholar
  29. 29.
    Okumus, N., Turkyilmaz, C., Onal, E. E., Atalay, Y., Serdaroglu, A., Elbeg, S., et al. (2008). Tau and S-100B proteins as biochemical markers of bilirubin-induced neurotoxicity in term neonates. Pediatric Neurology, 39(4), 245–351.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of Pediatrics, NICUBethune International Peace HospitalShijiazhuang HebeiChina

Personalised recommendations