Cell Biochemistry and Biophysics

, Volume 66, Issue 1, pp 187–198 | Cite as

Differential Effects of G- and F-Actin on the Plasma Membrane Calcium Pump Activity

  • Laura Vanagas
  • María Candelaria de La Fuente
  • Marianela Dalghi
  • Mariela Ferreira-Gomes
  • Rolando C. Rossi
  • Emanuel E. Strehler
  • Irene C. Mangialavori
  • Juan P. F. C. Rossi
Original Paper

Abstract

We have previously shown that plasma membrane calcium ATPase (PMCA) pump activity is affected by the membrane protein concentration (Vanagas et al., Biochim Biophys Acta 1768:1641–1644, 2007). The results of this study provided evidence for the involvement of the actin cytoskeleton. In this study, we explored the relationship between the polymerization state of actin and its effects on purified PMCA activity. Our results show that PMCA associates with the actin cytoskeleton and this interaction causes a modulation of the catalytic activity involving the phosphorylated intermediate of the pump. The state of actin polymerization determines whether it acts as an activator or an inhibitor of the pump: G-actin and/or short oligomers activate the pump, while F-actin inhibits it. The effects of actin on PMCA are the consequence of direct interaction as demonstrated by immunoblotting and cosedimentation experiments. Taken together, these findings suggest that interactions with actin play a dynamic role in the regulation of PMCA-mediated Ca2+ extrusion through the membrane. Our results provide further evidence of the activation–inhibition phenomenon as a property of many cytoskeleton-associated membrane proteins where the cytoskeleton is no longer restricted to a mechanical function but is dynamically involved in modulating the activity of integral proteins with which it interacts.

Keywords

PMCA Cytoskeleton Actin Regulation 

Abbreviations

DMSO

Dimethyl sulfoxide

EGTA

Ethylene glycol tetraacetic acid

IOVs

Inside-out vesicles

MESG

2-Amino-6-mercapto-7-methylpurine riboside

PMCA

Plasma membrane calcium ATPase

Tris

Tris(hydroxymethyl) aminomethane

C12E10

Polyoxyethylene glycol monoether with C12 alkyl chain and 10 polyoxyethylene units in the headgroup

Notes

Acknowledgments

The present work was supported by the NIH, Fogarty International Center Grant R03TW006837 to JPFCR and by ANPCYT, CONICET and UBACYT from Argentina. MCDLF, LV, MD, and MFG are doctoral fellows of CONICET. ICM, RCR and JPFCR are established investigators of CONICET, Argentina. EES is an established researcher of Mayo/Clinic Foundation, Rochester, MN, USA.

References

  1. 1.
    Vanagas, L., Rossi, R. C., Caride, A. J., Filoteo, A. G., Strehler, E. E., & Rossi, J. P. (2007). Plasma membrane calcium pump activity is affected by the membrane protein concentration: Evidence for the involvement of the actin cytoskeleton. Biochimica et Biophysica Acta, 1768, 1641–1644.PubMedCrossRefGoogle Scholar
  2. 2.
    Khurana, S. (2000). Role of actin cytoskeleton in regulation of ion transport: Examples from epithelial cells. Journal of Membrane Biology, 178, 73–87. (Review).PubMedCrossRefGoogle Scholar
  3. 3.
    Cooke, R. (1975). The role of the bound nucleotide in the polymerization of actin. Biochemistry, 14, 3250–3256.PubMedCrossRefGoogle Scholar
  4. 4.
    Bertorello, A. M., Ridge, K. M., Chibalin, A. V., Katz, A. I., & Sznajder, J. I. (1999). Isoproterenol increases Na+–K+-ATPase activity by membrane insertion of alpha-subunits in lung alveolar cells. American Journal of Physiology, 276, L20–L27.PubMedGoogle Scholar
  5. 5.
    Cantiello, H. F. (1995). Actin filaments stimulate the Na(+)–K(+)-ATPase. American Journal of Physiology, 1995(269), F637–F643.Google Scholar
  6. 6.
    González Flecha, F. L., Castello, P. R., Caride, A. J., Gagliardino, J. J., & Rossi, J. P. (1993). The erythrocyte calcium pump is inhibited by non-enzymic glycation: Studies in situ and with the purified enzyme. Biochemical Journal, 1993(293), 369–375.Google Scholar
  7. 7.
    Steck, T. L., Weinstein, R. S., Straus, J. H., & Wallach, D. F. (1970). Inside-out red cell membrane vesicles: Preparation and purification. Science, 168, 255–257.PubMedCrossRefGoogle Scholar
  8. 8.
    Ellman, G. L., Courtney, K. D., Andres, V, Jr, & Feather-Stone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7, 88–95.PubMedCrossRefGoogle Scholar
  9. 9.
    Filomatori, C. V., & Rega, A. F. (2003). On the mechanism of activation of the plasma membrane Ca2+-ATPase by ATP and acidic phospholipids. Journal of Biological Chemistry, 278, 22265–22271.PubMedCrossRefGoogle Scholar
  10. 10.
    Pardee, J. D., & Spudich, J. A. (1982). Purification of muscle actin. Methods in Enzymology, 85(Pt B), 164–181.PubMedCrossRefGoogle Scholar
  11. 11.
    Xu, S., Malinchik, S., Frisbie, S., Gu, J., Kraft, T., Rapp, G., et al. (1998). X-ray diffraction studies of the cross-bridge intermediate states. Advances in Experimental Medicine and Biology, 453, 271–278. discussion 278–279.PubMedCrossRefGoogle Scholar
  12. 12.
    Cooper, J. A., Walker, S. B., & Pollard, T. D. (1983). Pyrene actin: Documentation of the validity of a sensitive assay for actin polymerization. Journal of Muscle Research and Cell Motility, 4, 253–262.PubMedCrossRefGoogle Scholar
  13. 13.
    Webb, M. R. (1992). A continuous spectrophotometric assay for inorganic phosphate and for measuring phosphate release kinetics in biological systems. Proceedings of the National Academy of Sciences of the United States of America, 89, 4884–4887.PubMedCrossRefGoogle Scholar
  14. 14.
    Fiske, C. H., & Subbarrow, Y. (1925). The colorimetric determination of phosphorus. Journal of Biological Chemistry, 66, 375–400.Google Scholar
  15. 15.
    Schaegger, H., & Von Jagow, (1987). Tricine-sodium dodecyl sulfate polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Analytical Biochemistry, 166, 368–379.CrossRefGoogle Scholar
  16. 16.
    Lündahl, P. (1975). Proteins selectively released from water-extracted human erythrocyte membranes upon citranylation or maleylation. Biochimica et Biophysica Acta, 379, 304–316.PubMedCrossRefGoogle Scholar
  17. 17.
    Peterson, G. L. (1983). Determination of total protein. Methods in Enzymology, 91, 95–121.PubMedCrossRefGoogle Scholar
  18. 18.
    Ball, E. H. (1986). Quantitation of proteins by elution of coomassie brilliant blue R from stained bands after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Analytical Biochemistry, 1986(155), 26–27.Google Scholar
  19. 19.
    Echarte, M. M., Levi, V., Villamil, A. M., Rossi, R. C., & Rossi, J. P. (2001). Quantitation of plasma membrane calcium pump phosphorylated intermediates by electrophoresis. Analytical Biochemistry, 289, 267–273.PubMedCrossRefGoogle Scholar
  20. 20.
    Srivastava, J., & Barber, D. (2008). Actin co-sedimentation assay for the analysis of protein binding to F-actin. Journal of Visualized Experiments, 28, 690.Google Scholar
  21. 21.
    Weber, T., & Brunner, J. (1995). Photolabeling identifies a putative fusion domain in the envelope glycoprotein of rabies and vesicular stomatitis viruses. Journal of the American Chemical Society, 117, 3084–3095.CrossRefGoogle Scholar
  22. 22.
    Mangialavori, I., Giraldo, A. M., Buslje, C. M., Gomes, M. F., Caride, A. J., & Rossi, J. P. (2009). A new conformation in sarcoplasmic reticulum calcium pump and plasma membrane Ca2+ pumps revealed by a photoactivatable phospholipidic probe. Journal of Biological Chemistry, 284, 4823–4828.PubMedCrossRefGoogle Scholar
  23. 23.
    Mangialavori, I., Ferreira-Gomes, M. F., Pignataro, M. F., Strehler, E. E., & Rossi, J. P. (2010). Determination of the dissociation constants for Ca2+ and calmodulin from the plasma membrane Ca2+ pump by a lipid probe that senses membrane domain changes. Journal of Biological Chemistry, 285, 123–130.PubMedCrossRefGoogle Scholar
  24. 24.
    Dzandu, J. K., Deh, M. E., Barratt, D. L., & Wise, G. E. (1981). Detection of erythrocyte membrane proteins, sialoglycoproteins, and lipids in the same polyacrylamide gel using a double-staining technique. Proceedings of the National Academy of Sciences of the United States of America, 81, 1733–1737.CrossRefGoogle Scholar
  25. 25.
    Purich, D. L., & Southwick, F. S. (1999). Energetics of nucleotide hydrolysis in polymer assembly/disassembly: The cases of actin and tubulin. Methods in Enzymology, 308, 93–111.PubMedCrossRefGoogle Scholar
  26. 26.
    Karr, T. L., & Kristofferson, D. (1980). Mechanism of microtubule depolymerization. Correlation of rapid induced disassembly experiments with a kinetic model for endwise depolymerization. Journal of Biological Chemistry, 255, 8560–8566.PubMedGoogle Scholar
  27. 27.
    Scott, K. Z., & Stossel, T. P. (1983). Physical basis of the rheologic properties of F-actin. Journal of Biological Chemistry, 25, 11004–11009.Google Scholar
  28. 28.
    Esmann, M., Fedosova, N. U., & Marsh, D. (2008). Osmotic stress and viscous retardation of the Na,K-ATPase ion pump. Biophysical Journal, 95, 2767–2776.CrossRefGoogle Scholar
  29. 29.
    Käs, J., Strey, H., Tang, J. X., Finger, D., Ezzell, R., Sackmann, E., et al. (1996). F-actin, a model polymer for semiflexible chains in dilute, semidilute, and liquid crystalline solutions. Biophysical Journal, 70, 609–625.PubMedCrossRefGoogle Scholar
  30. 30.
    Auth, T., & Gov, N. S. (2009). Diffusion in a fluid membrane with a flexible cortical cytoskeleton. Biophysical Journal, 96, 818–830.PubMedCrossRefGoogle Scholar
  31. 31.
    Sheetz, M. P. (1983). Membrane skeletal dynamics: Role in modulation of red cell deformability, mobility of transmembrane proteins, and shape. Seminars in Hematology, 20, 175–188.PubMedGoogle Scholar
  32. 32.
    Molitoris, B. A., Dahl, R., & Geerdes, A. (1992). Cytoskeleton disruption and apical redistribution of proximal tubule Na(+)–K(+)-ATPase during ischemia. American Journal of Physiology, 263, 488–495.Google Scholar
  33. 33.
    Padanyi, R., Paszty, K., Strehler, E. E., & Enyedi, A. (2009). PSD-95 mediates membrane clustering of the human plasma membrane Ca2+ pump isoform 4b. Biochimica et Biophysica Acta, 1793, 1023–1032.PubMedCrossRefGoogle Scholar
  34. 34.
    Padanyi, R., Xiong, Y., Antalffy, G., Lor, K., Paszty, K., Strehler, E. E., et al. (2010). Apical scaffolding protein NHERF2 modulates the localization of alternatively spliced plasma membrane Ca2+_ Pump 2B variants in polarized epithelial cells. Journal of Biological Chemistry, 285, 1704–31712.CrossRefGoogle Scholar
  35. 35.
    Akiyama, T., Kadowaki, T., Nishida, E., Kadooka, T., Ogawara, H., Fukami, Y., et al. (1986). Substrate specificities of tyrosine-specific protein kinases toward cytoskeletal proteins in vitro. Journal of Biological Chemistry, 261, 14797–14803.PubMedGoogle Scholar
  36. 36.
    Agnew, B. J., Duman, J. G., Watson, C. L., Coling, D. E., & Forte, J. G. (1999). Cytological transformations associated with parietal cell stimulation: Critical steps in the activation cascade. Journal of Cell Science, 112, 2639–2646.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Laura Vanagas
    • 1
  • María Candelaria de La Fuente
    • 1
  • Marianela Dalghi
    • 1
  • Mariela Ferreira-Gomes
    • 1
  • Rolando C. Rossi
    • 1
  • Emanuel E. Strehler
    • 2
  • Irene C. Mangialavori
    • 1
  • Juan P. F. C. Rossi
    • 1
  1. 1.IQUIFIB, Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
  2. 2.Department of Biochemistry and Molecular BiologyMayo Clinic College of MedicineRochesterUSA

Personalised recommendations